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Abstract

The fork() system call is the de-facto way of cre-
ating processes in Linux. While it was designed to
support the parallel execution of programs, it is to-
day also often used for its copy-on-write capabili-
ties. Even though fork() is used in a wide variety
of use cases both in desktop and server software, it
performs poorly in memory-intensive programs and
violates fundamental design principles for operating
systems.
This paper summarizes alternative approaches to

process creation and discusses them with regard
to these problems. We recommend to replace the
fork() system call with a different set of system calls
to create an API that has a reasonable complexity
and respects security and memory management best
practices.

1 Introduction

fork() is a Linux system call that creates an almost
identical copy of the current process in a newly cre-
ated address space. After fork()ing , both processes
will continue execution at the fork() statement. The
parent process and the newly created child process
know whether they are the child process, allowing
them to branch into different execution paths [14].

fork() is a powerful tool since it can be used in a
wide variety of use cases: It was originally designed
to start another program in a shell environment (in
combination with the exec() system call) and to con-
figure the standard input and output file descrip-
tors of the created process (see §3.1) [3]. Numerous
applications also make use of the copy-on-write op-
timization that fork() is implemented with. The
copy-on-write behavior enables processes to dupli-
cate their address space quickly which is useful both
for starting up worker processes and for saving snap-
shots of the memory state in a time- and memory-
efficient way (see §3.2, §3.3). The applications of
these use cases range from shell programs to desktop
and server software: In a study of the Ubuntu 15.04
Linux distribution, Tsai et al. found that fork()

and its variant vfork() are used in 99.75 % of the
applications and libraries [25].
The execution time of fork() is dominated by the

time consumed by the address space copying pro-
cess and grows linearly with the number of pages
to copy. This has not been problematic so far due
to the “copy-on-write” optimization and the small
amount of memory processes used to take up. How-
ever, fork()’s execution time becomes problematic
in high-performance or memory-intensive applica-
tions, which are increasingly common. For example,
calling fork() in an application with 50 GB of allo-
cated memory takes more than 250 ms of runtime.
The performance of fork() significantly worsens if
multiple processes attempt to fork concurrently (see
§4) [27].

The fork() specification also violates multiple op-
erating system design principles: fork()’s copy-by-
default behavior encourages wasteful memory man-
agement. Accordingly, the inherit-by-default ap-
proach for access to resources like files and exter-
nal devices conflicts with the zero-trust principle.
fork() is both complicated to use and to imple-
ment. From the programmer perspective, the sys-
tem call is not intuitive since it does not create an
exact copy of the current process (e.g., threads can-
not be copied and port access permissions are not
inherited). From the operating system development
perspective, fork() is hard to implement since the
process state to copy is not limited to the address
space of the process and might involve any external
resources that are tied to the process [3].

We then describe both alternative implementa-
tions of the fork() specification and alternative
APIs for process creation: vfork() and “on-demand-
fork” are alternative implementations for fork()

that mostly comply with its specification. They
both reduce the execution time of the system call
by avoiding copying a large number of pages on
the system call invocation (see §6.1 and §6.2). A
spawn() API in combination with a threading API
separates the concerns of different use cases of fork()
(starting independent processes and parallel pro-
gramming) into different APIs (see §6.3 and §6.5).
And a clone() API can be used to provide the quick
process duplication capabilities that fork() was of-
ten used for while requiring the user to explicitly
specify which parts of a process should be copied
(see §6.4).
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We argue that while faster implementations like
vfork() and on-demand-fork can provide a per-
formance that is sufficient for today’s use cases,
fork()’s flawed design can only be fixed by switch-
ing to a new API. Linux already implements many of
the alternatives mentioned above although most of
them rely on the fork() implementation internally
(see §9).

2 The fork() system call

In the Linux operating system, the most common
way to create a process from the user space is the
fork() system call [2]. Calling fork() through its
glibc wrapper function without any parameters will
create a child process that is almost identical to the
calling (“parent”) process by duplicating the address
space of the process [1]. Some resources of the par-
ent process are copied (e.g., open file descriptors
and memory mappings) where others are ignored
(e.g., threads other than the one calling fork() and
timers) [14]. Once the operating system has com-
pleted copying the address space of the parent, the
execution in both the parent and the child process is
resumed at the fork() statement. The child process
will receive 0 and the parent process will receive the
process identifier of the child as the return value of
fork(). This allows the processes to identify whether
they are the parent or the child process and to con-
tinue execution in different branches of the program
[1, 14].

fork() is often used in combination with the
exec() system call to start the execution of another
program. When exec() is called, the operating sys-
tem will replace the process image of the calling
process with the process image from the executable
file that is specified as a parameter of the system
call. The operating system then resets some (e.g.,
memory mappings), but not all (e.g., some open file
descriptors and the process identifier) process at-
tributes and starts executing the image at the main()
entry point of the program [22, 24].
Since duplicating the address space of a process

can take a long time, Linux and many other UNIX
operating systems (e.g., OpenBSD and Solaris) use
a lazy copying approach called “copy-on-write” [14,
27, 7]. When calling fork(), only the kernel data
structures of the process are duplicated and the page
tables of both the parent and the child process will
reference the same physical pages. All of these pages
are marked as read-only and get a reference counter
that denotes how many processes are currently ref-
erencing a certain page. Only when one of the ref-
erencing processes attempts to write to one of these

Figure 1: A shell fork()s to configure and exec()ute
another program. The numbers show which process
is responsible for which step.

pages, a page fault is triggered and the operating sys-
tem will create an actual copy of the page, decreasing
the reference counter of the original and setting the
reference counter of the copy to 1. Pages with a ref-
erence counter of 1 will be treated like normal pages
again [1]. Copy-on-write requires hardware support
in the memory management unit of the processor to
translate virtual to physical addresses and call page
fault handlers. However, most recent devices have a
memory management unit and Linux does not sup-
port fork() at all if no memory management unit is
available [1, 19]. A notable example for modern sys-
tems that do not have memory management units
are embedded systems which often do not isolate
processes [5].

3 Use cases for fork()

History suggests that the fork() system call was
originally designed to create new processes in the
context of shell applications [3] but today, numer-
ous applications make heavy use of its address space
duplication capability.

3.1 Starting programs in shells

Shell applications allow the user to run programs in
a text-based interface. The user can start programs,
configure them with arguments and chain them to-
gether using pipes and redirections.

Figure 1 shows how a shell makes use of fork()

and exec() to run a program:

1. The user enters a command through the text in-
terface. This command specifies which program
to execute and whether to redirect the input or
output to another program or file.
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2. The shell fork()s, creating a copy of its pro-
cess that still has access to the command data
provided by the user.

3. The child process “Copy of Shell” then config-
ures its input and output file descriptor as spec-
ified by the user command. In this case, the
output is redirected to a file.

4. The child process calls exec() with the program
path from the command to start this program.

5. The programs runs and the parent can wait()

for the child to complete execution.

Baumann et al. argue that the design of the
fork() and exec() system calls was influenced by
how easy they could be implemented to support
starting and configuring a program in a child process
[3]. In this use case, the usage of the system calls
is simple since it avoids (a) the need for a complex
process creation system call that would allow config-
uring the child process with file descriptors etc. and
(b) complex inter-process communication for pass-
ing configuration data to the child process.
Since the created process is a child of the shell pro-

cess, the wait() and kill() system calls provide easy
interfaces for monitoring and stopping the program
[8, 15].

3.2 Snapshotting

Since fork() copies the address space of the pro-
cess almost exactly, it can be used to create a con-
sistent snapshot of the address space state, even in
applications with frequently changing data that use
multiple threads [14, 27]. This technique is com-
monly used in transactional systems like database
servers where the process creates “checkpoint” of
its memory state using a fork() system call. The
child process can either write its memory state to
secondary storage or allow the main process to re-
trieve data from its earlier state through interpro-
cess communication [27]. Snapshotting is also used
for applications that need to read a consistent state
of the process’s data without interrupting it. In this
case, the application can fork() to create a consis-
tent snapshot in the main memory and then analyze
that data (commonly used in debuggers) or write it
to secondary storage (used for backups in database
servers). Both of these cases benefit from the copy-
on-write implementation of fork() since most of the
data does not actually need to be copied [27, 3].

3.3 Parallel programming

fork() can also be used for parallel programming:
A program can distribute its workload to differ-
ent processes by fork()ing (multiple times) and
wait()ing for the child processes to complete their
work. In master-worker architectures (commonly
used in serverless computing platforms and web
servers), fork() can be used to quickly spin up new
worker processes [27, 3].

Thanks to copy-on-write, this approach has a
small memory footprint since most parts of the pro-
gram do not need be copied but can still be accessed
by all child processes. For example, the source data
and program instructions in a master-worker archi-
tecture are usually not modified by the worker pro-
cesses and thus do not need to be copied. If the child
processes do need to write a lot of data to complete
their work, this approach still takes advantage of the
isolated address spaces of the child processes: After
fork()ing, the child processes can modify the source
data set in memory without disturbing the execu-
tion of the other child processes. However, it is hard
for the parent and the child processes to communi-
cate about further instructions and computed results
since they cannot access the same address space any-
more and need to use interprocess communication
instead.

3.4 Launching independent programs

Some programs start other programs without the
need to monitor or interact with the other program
afterwards. Specifically, this includes desktop appli-
cations where the user can request to open a file or
web-link that the application does not support by it-
self. Some background processes like task schedulers
also need to start other processes without further in-
teractions.

These use cases can be implemented with fork()

and exec() too by configuring open file descriptors
to close upon the calling of exec() and by closing and
disconnecting other resources that the child process
would inherit.

Since System V, fork() can also be used to start
daemon processes in Unix systems [18]. If a process
wants to start a program as a daemon process, it
can use a “double-fork()” to start a process that
will continue its execution independently from the
user. For that, the main process calls fork() to cre-
ate a child process in the background and the child
process assigns itself to a new session. The child
process then calls fork() again to create a grand-
child process and exits immediately. Since the child
process died, the grandchild process is assigned to
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the Linux init process. While daemon processes can
still be created through a double-fork() in modern
versions of Linux, the use of “System V Daemons”
is discouraged in favor of “New-Style” daemons [18].
This alternative approach uses service units to start
daemon processes that are supervised by the “sys-
temd” system and service manager and does not re-
quire the user to use fork() any more.

4 fork()’s performance

Since fork() needs to copy the whole address space
of the fork()ing process, the execution time of the
system call grows linearly with the amont of pages
that it takes up. With the copy-on-write optimiza-
tion implemented, the execution time of fork() still
grows linearly with the amount of pages of the orig-
inal process, but on a smaller scale. In turn, the
execution time of the page fault handler increases
because it needs to copy pages that are referenced
by multiple processes if one of the processes attempts
to write to it.
Zhao et al. ran a benchmark on a 16-core AMD

EPYC CPU with 256 GB of main memory and could
observe such a linear growth both in sequential and
concurrent executions of fork() [27]. The result of
this benchmark can be seen in Figure 2. In this
clinical example, small processes in the range of up
to 1 GB of allocated memory can be fork()ed within
up to 8 ms while it takes around 250 ms to fork()

large processes in the range of 50 GB of allocated
memory even without dirty pages. It it also notable
that fork() performs significantly worse if multiple
processes fork() concurrently. In the demonstrated
example, three instances of the benchmark are run
concurrently. For the range of allocated memory
that has been covered by the benchmark, fork()ing
concurrently increases the execution time by a factor
of two to three, compared to sequential execution
[27].
The authors argue that while this execution time

is acceptable in many cases (i.e., desktop applica-
tions, background processes), it is becoming the bot-
tleneck for performance-critical applications with a
large memory footprint like database and caching
servers since they rely on fork() for frequent snap-
shotting [27].

5 fork()’s design

fork() violates several design principles of operat-
ing systems. The copy-by-default behaviour encour-
ages wasteful memory management and inattentive

Figure 2: Execution time of the fork() system call,
plotted as a function of the size of the forked process
[27].

security practices. Additionally, both the implemen-
tation and usage of fork() are highly complex since
the system call promises to create an equivalent copy
of a process but makes numerous exceptions.

5.1 Memory management

According to its specification, fork() duplicates a
process including its address space [14]. This ap-
proach is wasteful, considering that in many cases,
the child process does not require access to all data
from its parent. The extreme case, where another in-
dependent program is started and no data from the
parent process other than the program path is re-
quired, is common in desktop applications and task
schedulers (see 3.4).

Even with copy-on-write implemented, the oper-
ating system has to predict how much main memory
the forked process will actually need: If the oper-
ating system reserves enough memory to copy all
pages from the parent process eventually, it cannot
take advantage of the shared parts between the par-
ent and the child process (e.g., the code segment).
If the operating system on the other hand only re-
serves as much memory as is needed immediately, it
is likely that it needs to reserve additional memory
in the near future. This can also lead to “mem-
ory overcommitment”: If the processes share a lot
of memory at first, a lot of them can fit inside the
main memory. If the processes suddenly need to cre-
ate copies of the shared memory (e.g., because a load
of work is dispatched and distributed to them), the
processes might need more space than available [3].

5.2 Complexity

As demonstrated above, fork() serves lots of differ-
ent use cases, some of which center around using the
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copy-on-write implementation of fork() rather than
the creation of a new process. While fork() was
simple to use in the context of a shell, the API has
become unintuitive and complex to use since its be-
haviour is influenced by numerous system call flags
[3]. In contrast, seemingly primitive operations like
creating a new process independently from the cur-
rent one require knowledge about what resources the
current process is using and what process attributes
are set [3].
The Linux fork() man page lists 16 process prop-

erties that are not duplicated exactly or not dupli-
cated at all by the system call [14]. Furthermore,
access to some external resources (e.g., the GPU) is
not managed by the operating system and cannot
be duplicated through the fork() system call itself
[3]. Programmers need to carefully consider the nu-
merous exceptions concerning the similarity of the
duplicated process when using fork().

5.3 Abstraction

When calling fork(), the child process is expected
to inherit access to the resources that the parent has
access to so that it could behave the same as its par-
ent process if it executed the same instructions. In
reality, this does not even work for many of Linux’s
built-in tools: the man page for fork() lists excep-
tions for numerous resources (like threads, timers,
port access permissions) [14]. Additionally, if the
process has access to resources on external stateful
hardware (like graphics, machine learning or cryp-
tography modules), the access to these resources and
the state of the process on these resources would
need to be duplicated too through the fork() system
call. However, the operating system is not aware of
the process state on all external devices and thus
it is often unspecified whether the state on external
devices is duplicated or shared correctly [3].
This violates the principle of abstraction on op-

erating systems: It is impossible to change the
underlying behaviour that implements this process
creation functionality because the implementation
is dictated by the specification. Specifically, this
makes it impossible to implement the functionality
of fork() on top of a system that does not support
fork() itself for a number of reasons [3]:

• The state of new process’s address space can
neither quickly nor reliably be copied from the
old process.

• The fork() implementation might not have ac-
cess to all resources that the process is using.

• In operating systems without virtual memory
addresses, the address space of new process can-

not have the same range of addresses.

5.4 Security

The “inherit-access-by-default”-mechanism violates
the principle of least privilege [3]. In use cases where
another program should be started independently
from the calling process, the child process must make
sure to close file descriptors and disable access to
external resources that are not intended to be avail-
able to the program that is executed afterwards [14].
This approach is error-prone because access to files
and resources can be requested at any point in a
program.

Additionally, since fork() duplicates address
spaces, the parent process and the child process
will necessarily have the same address space layout.
This hinders address space layout randomisation and
makes the system more vulnerable to memory cor-
ruption attacks [3].

6 Alternatives to fork()

As we have shown, both the performance and the
design of Linux’s fork() do not meet the expecta-
tions for a modern general-purpose operating sys-
tem. We will now take a look at alternatives to both
the implementation and the specification of fork()
and what is needed in the Linux kernel to support
them.

6.1 vfork()

In cases where fork() is used in combination with
exec(), it can be unnecessary to create a copy of the
process’s address space in the first place if the child
process never modifies the copied address space. The
vfork() system call was first introduced into the
BSD operating system for that exact reason: It can
be used similarly to fork() but the operating system
does not copy the address space and instead runs the
child process in the address space of the parent pro-
cess until exec() is called. The parent can resume
its execution after the child process has started the
new program through exec() [3].

It is noteworthy that the operating system does
not stop a child process from writing to the parent
address space and specifies this case as undefined
behaviour. Since even the modification of a reg-
ister might result in undefined behaviour, the use
of vfork() is discouraged. vfork() has even been
removed from the POSIX specification, although
it is still present in the Linux specification and
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not marked as obsolete to be used in performance-
critical applications and by systems without a mem-
ory management unit [4].
As vfork() does not need to copy the address

space of the process or the corresponding page table,
its runtime is independent from the amount of allo-
cated memory in the parent process. Thus, it can
solve the performance issues with fork() – in cases
where vfork() can be used. However, since vfork()

works the same way as fork(), vfork() suffers from
the same design issues as fork(), other than memory
management.

6.2 On-demand-fork

Even with the copy-on-write optimization, the exe-
cution time of fork() is dominated by copying pages
because fork() still needs to copy and modify the
page table pages of the address space. Zhao et al.
suggest to apply the copy-on-write optimization to
first-level page table pages too [27]. Similar to the
usual copy-on-write implementation, the last-level
page tables are marked as read-only in memory and
each get a reference counter when forking. Only if
one of the referencing processes attempts to write to
an address space page contained in a read-only page
table, both the page table and the referenced page
are actually copied (and their reference counter is
decreased) [27].
Figure 3 shows a benchmark from the authors of

on-demand-fork that compares the execution times
of the Linux fork() implementation and their mod-
ified fork() implementation. The benchmark has
been run on a 16-core AMD EPYC 7302P proces-
sor with 16 GB of main memory and averaged over
5 runs [27]. In this environment, the default Linux
fork() implementation takes 65 to 270 times longer
to execute compared to on-demand-fork in the same
benchmark. The relative performance advantage of
on-demand-fork increases with the size of the ad-
dress space to copy and the absolute execution time
is below 1 ms for all measured address space sizes.
Zhao et al. have implemented on-demand-fork as

a separate system call in a copy of the Linux source
code [26]. To the best of our knowledge, it has not
been adopted in any major Linux distribution.

6.3 spawn()

A spawn() API creates a new process which is inde-
pendent from the calling process and runs a program
that is provided as a path through a parameter of
the API call [3].

Figure 3: Benchmark by the authors of on-demand-
fork, comparing the execution time of fork(), fork()
with huge pages and on-demand-fork [27]

Linux implements the posix spawn() API on top
of the clone() and exec() system calls. The process
created through posix spawn() is not completely in-
dependent from the process that created it, e.g., file
descriptors from the parent process are still be du-
plicated by default [9]. However, the posix spawn()

API does offer a set of abstractions for configuring
the process that is created. For example, the user
can pass a set of posix spawn file actions as a pa-
rameter to specify which file descriptors should be
opened, closed or even duplicated [9]. This can be
considered as a first step towards creating a process
spawning API that is independent from the parent
process.

Oracle’s Solaris uses a different approach than
Linux: Since version 11.4 (released in 2018), the
posix spawn() implementation uses a new spawn()

system call instead of vfork() and exec(). Notably,
the spawn() system call does not duplicate the ad-
dress space of the calling process and the threads in
the calling process [7].

6.4 clone()

Some use cases of fork() benefit from the quick pro-
cess duplication that is enabled through copy-on-
write (see §3.2 and §3.3). But even though fork()

is designed specifically for process duplication, there
are numerous differences between the parent and the
child process (see §5.2). Meanwhile, some similari-
ties between the parent and the child process are not
intended (e.g., access to resources, see §5.4).

A clone() API allows process duplication and
gives the programmer more fine-grained control over
what is being copied [3]. This increases awareness
for the limitations of duplicating a process while still
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allowing for a fast, fork()-like copy-on-write imple-
mentation.
Linux implements the clone() and clone3() sys-

tem calls [12]. Both system calls allow the program-
mer to configure which resources of a process to du-
plicate. For example, the programmer can specify
whether all threads are duplicated, what other pro-
cess should be used as a parent process and whether
the original and the new process should share an
address space [12].
Snapshotting use cases (see §3.2) can benefit from

the precision that this system call allows for in com-
parison to fork() by limiting what resources will be
copied [3].

6.5 Threading

A process is an operating system abstraction for the
execution of a program. Since the operating system
can execute multiple processes concurrently or in
parallel, they can be used for parallel programming
(see §3.3). In these use cases, the isolation between
different processes is usually more a hindrance than
a benefit and interprocess communication is neces-
sary to distribute workloads and to report results.
Kernel level threads can be used to execute multi-

ple threads within the same process concurrently or
in parallel. Since all threads of a process are located
in the same address space, they can communicate
easily and efficiently using the heap.
Linux implements the POSIX threads API, which

allows the user to create, manage and communicate
with threads within the current process in a similar
manner to dealing with processes [13]. For example,
POSIX threads can wait for the termination of other
threads through the pthread join() function [11]

7 Discussion

The on-demand-fork implementation (see §6.2) in-
creases the performance of the system call without
changing its specification. With an execution time
of less than 1 ms for up to 50 GB of allocated address
space and an expected linear growth, fork() will not
be the bottleneck of high-performance and real-time
applications any more. Consequently, the perfor-
mance problem that Linux’s current fork() imple-
mentation entails can be solved without changing
the specification of the system call.
The violations of the fork() system call against

operating design principles (see §5), however, cannot
be solved through better implementations since they
originate in the system call’s specification. Bau-
mann et al. suggest to replace fork() with a set of

other APIs that each implement a well-defined sub-
set of fork()’s capabilites: A spawn API (see §6.3)
could be responsible for launching independent pro-
grams in a new process (see §3.2) while a threading
API (see §6.5) should be used for parallel program-
ming, if isolation between the threads is not required
or even a hindrance [3]. Since this approach does not
entail the copy-everything behaviour of fork(), the
design issues described above do not apply to it.

Still, this replacement offers no performant
method to duplicate processes and their address
spaces in isolation. A clone() API (see §6.4) could
be used to implement this functionality. If this API
required the user to explicitly specify which parts of
the process state to clone, it would not suffer from
the complexity and security issues of fork() (see §5.2
and §5.4). The memory management issue (see §5.1)
would not be solved but it would be limited to use
cases of process cloning and would not affect all use
cases of process creation. Similarly, the abstraction
issue (see §5.3) would not be solved but through the
opt-in API, nobody would assume that everything
is cloned. Access to external resources that are not
managed by the kernel directly would need to be
requested again by the program.

8 Related Work

The Linux implementation of fork() conforms to the
POSIX.1-2008 specification [14, 10]. Other Unix-like
and Unix-based operating systems such as OpenBSD
and macOS also have conforming implementations
for the fork() system call [21, 20, 23]. While the
POSIX specification of fork() is open to some ex-
tensions, the fundamental design problems outlined
in §5 apply to all POSIX-compliant fork() imple-
mentations. The complexity of using fork() is even
worse when writing code that should support multi-
ple Unix-like platforms because the POSIX specifi-
cation allows for additional exceptions.

Similarly, the posix spawn(), clone()and Pthread

APIs that were outlined as alternatives to the fork()
system call (see §6) are also available on POSIX-
compliant systems [10].

Microsoft Windows does not offer fork() or a sim-
ilar system call through the Win32 API. Instead, it
specifies the CreateProcess() API which works like a
spawn() API (see §6.3) [3, 16]. In fact, Windows does
not expose process duplication capabilities like those
of fork() or clone() to the userspace at all [6, 17].
Thus, the Windows toolset for process creation does
not suffer from the problems discussed above (see §4,
§5) but it also cannot provide the quick process du-
plication capabilities that are used in snapshotting
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use case (see §3.2).

9 Conclusion

While the limited performance of fork() can be miti-
gated through better implementations of the copying
strategy of fork(), the underlying design problems
cannot be solved without changing the API. Oper-
ating system developers need to carefully specify a
set of new process creation primitives that respect
the fundamental design principles of an operating
system. Linux already implements multiple POSIX
APIs that solve specific problems, even though all
of these implementations still rely on the fork() or
clone() system calls internally. Since these APIs
can jointly replace the fork() system call, it is ev-
idently not a necessity to support fork(). Linux
should start the long deprecation process of fork()
to encourage developers to switch to its other APIs.
This will reduce the amount of bugs and security
issues related to process creation and remove unnec-
essary constraints from the operating system itself.
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