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1. Introduction

While the first theoretical foundations of quantum computers have already been developed

in the 1980s, quantum computers have only recently gathered widespread attention with

the development and availability of real quantum computing hardware [13, 8]. The field is

evolving rapidly, with new tools, algorithms, and hardware being released every month.

Still, today’s quantum devices are subject to high amounts of noise, have a very limited

number of qubits, and are not fully connected. These limitations often further reduce the

number of available qubits and gates needed to perform a given task [5]. Researchers often

refer to these limited quantum devices as noisy intermediate-scale quantum (NISQ) devices

[15].

One promising idea for harnessing the computational power of quantum devices within the

NISQ era is to apply Machine Learning methodology to quantum computers [5]. Machine

Learning can often be used to approximate complex functions without requiring intricate

knowledge about their nature. Moreover, Machine Learning can compensate for or even

benefit from a limited amount of noise [6].

A typical Machine Learning workflow uses a parameterizable function as a so-called model

[3]. Machine Learning aims to choose parameters for the model so that the model maps

any given input data closely to the expected output data. In many iterations, an optimizer
evaluates the model function to compute the loss value, which indicates how much the

calculated value deviates from the expected output value. The optimizer uses these

evaluations to produce new parameter values and then repeats its assessment. This process

is known as training. Many state-of-the-art optimizers use an approach called gradient
descent to improve the model’s parameters [1]. Machine Learning has recently made a

tremendous leap due to the availability of computational resources and improvements in

model function design [9]. These improvements allow Machine-Learning applications to

train billions of parameters with terabytes of training data in many iterations.

A Parameterized Quantum Circuit (PQC) can replace the classical model function to transfer

the machine-learning methodology to quantum computers. PQCs are the quantum equiva-

lent of parameterized algorithms like neural networks [1]. Gradient-based optimizers can

be used for Quantum Machine Learning (QML) too, but the current price of NISQ devices

does not allow for large amounts of data and large numbers of iterations. Additionally,

each evaluation of a quantum circuit comprises multiple shots to decrease statistical noise

introduced by qubit measurement.

In “Structure optimization for parameterized quantum circuits,” Ostaszewski et al. explore a
different optimization approach [14]. They observed that the univariate expected value
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1. Introduction

of a PQC w.r.t. a single rotational Pauli gate parameter is always sinusoidal. Using three

circuit evaluations with select parameter values, they could reconstruct this univariate loss

function for every parameter value. Since the curve of sine functions is well-understood,

they could then analytically calculate the parameter value that minimizes this univariate

loss function. The Rotosolve optimizer uses this approach to optimize each parameter

individually. While univariate optimization does not guarantee convergence to the global

minimum, experiments show good results with this approach compared to state-of-the-art

optimizers such as Adam and SPSA [10, 18, 14]. However, the original Rotosolve approach

was limited to optimizing parameters of single-qubit gates.

These promising results naturally pose the question of whether this approach can be ex-

tended to other types of gates. Because of their similarity with the studied rotational gates,

this bachelor’s thesis presents Crotosolve, an extension of the Rotosolve optimization

technique for controlled rotational Pauli gates.

To develop and investigate the Crotosolve idea, this thesis is structured as follows. First,

in chapter 2, I summarize the theoretical background in quantum computing, Machine

Learning, and Quantum Machine Learning required to understand the idea and proof

behind Crotosolve. Chapter 4 analyzes the mathematical structure of a controlled rota-

tional Pauli gate parameter’s univariate effect on the expected value of a quantum circuit

measurement. It also contains a constructive proof for an algorithm that can be used to

determine the prefactors and offsets characterizing the effect function’s specific curve.

The Crotosolve algorithm is evaluated in chapter 5. I present a proof-of-concept implemen-

tation in PennyLane, a major quantum computing SDK [2, 19]. Using this implementation

and PennyLane’s Rotosolve [14], Adam [10], Adagrad [7], and Stochastic Gradient De-

scent implementation, I create a benchmark of their loss curves. The data gathered in this

benchmark shows that Crotosolve outperforms the other optimizers in most cases. Its

loss value progresses towards the minimum value much quicker and more consistently

in comparison to its competitors. However, in cases with high numbers of parameters,

the gradient-based Adam optimizer shows a slightly better final result. Even in this case,

Crotosolve progression towards low loss values is steeper. A comprehensive discussion

of this evaluation can be found in section 5.3.

While I believe Crotosolve to be the first implementation that exploits the sinusoidal

structure of CRP gate loss functions explicitly, other gradient-free approaches have been

developed in the recent years. In chapter 3, I outline how contributions by Wierichs et al.

allow the reconstruction of univariate loss functions of almost arbitrary PQCs [20]. These

results have already been implemented in PennyLane’s Rotosolve implementation and

were evaluated as part of chapter 5.

Finally, in chapter 6, I present a summary of the contributions from this thesis. Further-

more, I outline how some of the optimizations of my Crotosolve implementation and

the Wierichs-improved implementation of Rotosolve could be fused in an optimizer that

combines their advantages.

The proof-of-concept implementation as well as the code and benchmark data of my

evaluation are available on GitHub and Zenodo [16].
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2. Background

This chapter introduces the theoretical background for understanding the idea behind

Crotosolve. Rather than giving a complete overview of the field, this text is strictly

focused on aspects critical for proving the optimizer’s correctness and understanding its

applications. I will first present an introduction to the theory of quantum information

processing using qubits, gates, and circuits. Following this introduction, I will also give a

quick introduction to the field of Machine Learning. I will show how Quantum Machine

Learning applies the ideas fromMachine Learning to quantum processing devices. The final

section of this chapter will focus on state-of-the-art classical and quantum optimization

techniques in particular. One of these optimization methods is Rotosolve, which I will

present with further detail. These basic ideas are also fundamental for the Crotosolve

algorithm, which will be developed in the next chapter.

2.1. A brief introduction to quantum computing

At its core, the operation of a quantum computer revolves around gates and qubits. Qubits

(quantum bits) make up the data register of a quantum computer. Just like a classical bit

can be in the 0 or 1 state, a qubit can be in a corresponding |0⟩ or |1⟩ state. Besides these
two basis states, however, quantum bits can be in a superposition of these two states,

|𝜓 ⟩ = 𝛼0 · |0⟩ + 𝛼1 · |1⟩ ,

where the probability amplitudes 𝛼0, 𝛼1 ∈ C can be any complex numbers with |𝛼0 |2 +
|𝛼1 |2 = 1. The superposable character of a qubit essentially increases its expressibility

in comparison to a classical, digital bit from the discrete set {0, 1} to the complex, two-

dimensional sphere surface

{
®𝛼 ∈ C2 | | ®𝛼 |2

}
. Thus, a quantum computer with a single qubit

can work with continuous, multidimensional data, while a classical computer with a single

bit can only work with a single boolean value.

Due to the laws of quantummechanics, this multidimensional superposition state collapses

into one of its discrete basis states upon observation. More specifically, this means that

measuring the value of a qubit cannot reveal its probability amplitudes and instead turns

the state into either |0⟩ (i.e., 𝛼0 = 1, 𝛼1 = 0) or |1⟩ (i.e., 𝛼0 = 0, 𝛼1 = 1)
1
. The probability of

1
Technically, it is possible to measure the state in a different basis, like |+⟩ = |0⟩+|1⟩√

2

and |−⟩ = |0⟩− |1⟩√
2

.

However, this will not be necessary for the development of Crotosolve.
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2. Background

|0⟩

|1⟩

|𝑅⟩
|𝐿⟩

|+⟩

|−⟩

Figure 2.1.: The Bloch sphere can represent the state |𝜓 ⟩ = 𝑒𝑖𝛾
(
cos

𝜃
2
|0⟩ + 𝑒𝑖𝜑 sin 𝜃

2
|1⟩

)
of

a single qubit, ignoring its global phase. 𝜑 specifies the rotation of the state

around the 𝑍 axis (|0⟩ → |1⟩). 𝜃 specifies the rotation of the state relative to

the 𝑋𝑌 plane (𝑋 axis: |−⟩ → |+⟩, 𝑌 axis: |𝐿⟩ → |𝑅⟩).

the qubit collapsing into either of these states is given by the squared absolute value of its

probability amplitude,

P(𝑀 = |𝑛⟩) = |𝛼𝑛 |2 , 𝑛 ∈ {0, 1} .

Thus, the normalization of the probability amplitudes,

∑
𝑛∈{0,1} |𝛼𝑛 |2 = 1, is in fact a

normalization of the probability distribution over the given basis states. While it is

physically impossible to observe 𝛼0 and 𝛼1 directly, their squared absolute values still

influence the outcome of observation 𝑀 . If the same
2
quantum state can be prepared

many times, |𝛼𝑛 |2 can be estimated as the relative frequency from an empirical probability

distribution of𝑀 .

Since only the absolute value of 𝛼0 and 𝛼1 influences the measurement outcome, it is

common to rewrite the state as follows.

|𝜓 ⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩

= 𝑒𝑖𝛾
(
cos

𝜃

2

|0⟩ + 𝑒𝑖𝜑 sin 𝜃

2

|1⟩
)

(2.1)

In this representation, 𝑒𝑖𝛾 has no effect on the outcome of measurement𝑀 because

��𝑒𝑖𝛾 �� = 1.

That is why the global phase 𝛾 is often ignored. The remaining two variables 𝜃 and 𝜑 can be

interpreted as coordinates on the so-called Bloch sphere, which is shown in Figure 2.1.

2
Two quantum states

∑
𝛼𝑛 |𝑛⟩ and

∑
𝛽𝑛 |𝑛⟩ are the same if all of their probability amplitudes are the same,

i.e., 𝛼𝑛 = 𝛽𝑛∀𝑛.

4



2.1. A brief introduction to quantum computing

2.1.1. Multi-qubit-systems

The separated state of several qubits can be combined into a multi-qubit state through the

Kronecker product. With two qubits, this results in

(𝛼0 |0⟩ + 𝛼1 |1⟩) ⊗ (𝛽0 |0⟩ + 𝛽1 |1⟩)
=𝛼0𝛽0 |0⟩ ⊗ |0⟩ + 𝛼0𝛽1 |0⟩ ⊗ |1⟩ + 𝛼1𝛽0 |1⟩ ⊗ |0⟩ + 𝛼1𝛽1 |1⟩ ⊗ |1⟩
= 𝛼0𝛽0︸︷︷︸

=:𝛾00

|00⟩ + 𝛼0𝛽1︸︷︷︸
=:𝛾01

|01⟩ + 𝛼1𝛽0︸︷︷︸
=:𝛾10

|10⟩ + 𝛼1𝛽1︸︷︷︸
=:𝛾11

|11⟩ . (2.2)

with

∑
𝑛∈{00,01,10,11} |𝛾𝑛 |2 = 1. I use natural numbers instead of bitstrings to simplify the

notation in the following. For example, Equation 2.2 can be compactly rewritten to the

following.

𝛾00 |00⟩ + 𝛾01 |01⟩ + 𝛾10 |10⟩ + 𝛾11 |11⟩
= 𝛾0 |0⟩ + 𝛾1 |1⟩ + 𝛾2 |2⟩ + 𝛾3 |3⟩

=

3∑︁
𝑗=0

𝛾 𝑗 | 𝑗⟩
(2.3)

Similarly to this two-qubit example, a systemwith𝑛 separate qubit states |𝜓𝑖⟩ , 1 ≤ 𝑖 ≤ 𝑛 can

be described with a product state. In this system, the probability amplitudes 𝛾0, . . . , 𝛾2𝑛−1 ∈
C of the standard basis states |0⟩ , . . . , |2𝑛 − 1⟩ are again given by the multiplication and

form a probability distribution through their squared absolute values.

|𝜓 ⟩ =
𝑛⊗
𝑖=1

|𝜓𝑖⟩ =
2
𝑛−1∑︁
𝑗=0

𝛾 𝑗 | 𝑗⟩ with

2
𝑛−1∑︁
𝑗=0

��𝛾 𝑗 ��2 = 1 (2.4)

2.1.2. Gates and circuits

Unlike with classical bits and gates, it is physically impossible for a quantum computer to

create copies of a qubit. While classical computers typically read (i.e., copy), transform

(e.g., add two numbers), and write data from and to registers, quantum computers can

only perform in-place operations.

Quantum states can be changed by applying operators to them. Since the state of an 𝑛-

qubit-system can be described through its probability amplitudes 𝛾𝑖 , we can represent this

state with a 2
𝑛
-dimensional complex vector. If we identify |0⟩ ≡

(
1 0

)⊤
and |1⟩ ≡

(
0 1

)⊤
,

equation 2.4 implicitly leaves us with

5



2. Background

|0⟩ 𝐻

Figure 2.2.: In this single-qubit quantum circuit, a Hadamard gate is applied to the qubit

before it is measured. This circuit will probabilistically output |0⟩ just as often
as |1⟩.

|𝜓 ⟩ ≡
©­­«
𝛾0𝑛
...

𝛾1𝑛

ª®®¬ . (2.5)

Universal quantum computers allow us to apply operations to these states that are described

by unitary matrices
3
. Such an operation is referred to as a gate in quantum computing.

Gates can act on one or multiple qubits, and bigger gates can be composed by computing

the Kronecker product of gates.

The application of gates to a system of qubits can be visualized through quantum circuits.

In these circuits, each qubit is displayed as a horizontal line, and gates are displayed as

boxes that overlay the lines of the qubits they are applied to. Measurements are indicated

by a box with a meter inside.

Take for example the Hadamard gate 𝐻 ,

𝐻 =
1

√
2

(
1 1

1 −1

)
. (2.6)

Applying the Hadamard gate to a single qubit will transform the |0⟩ state into 1√
2

|0⟩+ 1√
2

|1⟩
and |1⟩ into 1√

2

|0⟩ − 1√
2

|1⟩, which are both equal superpositions of the original states.

Figure 2.2 visualizes the application of a Hadamard gate in a quantum circuit.

All single-qubit gates 𝑈 ∈ C2×2
can be represented by products of rotational Pauli gates

𝑅𝑋 (𝜃 ), 𝑅𝑌 (𝜃 ) and 𝑅𝑍 (𝜃 ),

𝑅𝑃 (𝜃 ) = cos

(
𝜃

2

)
· 𝐼2 − 𝑖 · sin

(
𝜃

2

)
· 𝑃, 𝑃 ∈ {𝑋,𝑌, 𝑍 } (2.7)

These gates are called parameterized gates since they can be adjusted by a continuous

parameter 𝜑 ∈ [0, 2𝜋]. The Hadamard gate, for example, can be written as 𝐻 = 𝑅𝑋 (𝜋) ·
𝑅𝑌 (0.5𝜋).

Single-qubit operations can be simulated trivially by computing the product of the gate

matrices and the state vector.

3
A matrix 𝐴 ∈ C𝑁×𝑁

is called unitary if and only if its conjugate transpose is its inverse, i.e. 𝐴⊤ = 𝐴−1.

6



2.2. Quantum Machine Learning

The problem gets more interesting with two-qubit gates. For example, the controlled 𝑋

gate (also known as 𝐶𝑁𝑂𝑇 ) works on a system of two qubits and maps the basis states as

follows:

𝐶𝑋 =

©­­­«
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

ª®®®¬ (2.8)

𝐶𝑋 |00⟩ = |00⟩ (2.9)

𝐶𝑋 |01⟩ = |01⟩ (2.10)

𝐶𝑋 |10⟩ = |11⟩ (2.11)

𝐶𝑋 |11⟩ = |10⟩ (2.12)

When applying the 𝐶𝑋 gate to states from the computational basis, the second bit is

flipped (𝑋 is applied) if and only if the first bit is |1⟩. States other than those from the

computational basis might, however, not follow this simple principle. The |++⟩ state, for
example, is transformed into the |−+⟩ = 𝐶𝑋 |++⟩ state, changing the control qubit but not

the target qubit.

2.2. Quantum Machine Learning

Today’s quantum devices are far from ideal implementations of the qubits, gates, and

circuits presented in section 2.1. Noise is a major limitation of today’s quantum devices.

Noise is hard to describe completely since it can be the result of a multitude of factors. For

example, noise can be accumulated over time by unwanted interactions of the physical

qubit implementation with the outside world. Additionally, the number of qubits on today’s

quantum devices is limited to a couple dozen or a couple hundred. On quantum computers

with high numbers of qubits, the connection topology is incomplete, as this simplifies the

architecture of the physical system. This means that multi-qubit gates cannot be applied to

arbitrary groups of qubits directly. This limitation can be mitigated through the application

of swap gates prior to the multi-qubit gate application, however, this further increases the

quantum computer’s exposure to noise. The limitations of today’s quantum devices are

collectively referred to as the noisy intermediate-scale quantum (NISQ) era [15, 13].

Research suggests that Quantum Machine Learning and Variational Quantum Algorithms

may produce useful results even in the presence of NISQ limitations [5]. In the following

section, I will first introduce a few ideas from classical Machine Learning. Using these

results, I will present several approaches to Quantum Machine Learning. I will focus on

optimization techniques in particular, as from Chapter 4 onwards, I will introduce a new

optimizer that can produce results in this regime with high efficiency.

7



2. Background

Figure 2.3.: In a typical supervised Machine Learning optimization loop, the optimizer runs

the model with training data to compute a loss value. It updates the model’s

parameters to reduce the loss value in the next evaluation. Through many

iterations of this process, the model learns the relation between input and

output data [3].

2.2.1. Classical Machine Learning

According to Bishop [3], Machine Learning typically aims to find and reproduce a pattern

in a dataset. In a supervised Machine Learning task, a set of input data is given together

with its corresponding output data. This data could, for example, be the results of an

experiment where the input represents the parameters of the experiment and the output

represents the measurement results corresponding to these parameters. The goal of a

supervised Machine Learning task is to recognize the relation between input and output

data to predict output values from input values. We measure the quality of the Machine

Learning results with a loss value, which is a real number representing how much the

predicted values deviate from the correct values from the output data set.

Many approaches in Machine Learning use a parameterizable model function to express

the mapping from input to output. An optimizer feeds data into the model and compares

the model’s prediction with the correct output to determine the loss value. Based on this

loss value, it updates the parameters of the model aiming to produce a better loss value in

the next model evaluation. The repeated process of evaluating test data with the model

and updating the model’s parameters based on the generated loss value is often referred to

as the optimization loop. The optimization loop of a supervised Machine Learning process

is visualized in Figure 2.3.

It should be noted that supervised learning is not the only type of Machine Learning task.

Unsupervised learning tasks, for example, can be implemented without given output data.

In this case, the loss value must be determined from the model output without relying

on any given ideal output data. When applying Machine Learning to an optimization

problem, the loss value is typically the negative objective value of the output proposed by

the model function.

The success of a Machine Learning task depends on the careful selection of training

data, loss function, model, and the optimizer. For the optimizer, a common choice is

8



2.2. Quantum Machine Learning

Gradient Descent. In each optimization iteration, the optimizer computes the gradient of

the loss value from the model output w.r.t. the model parameters. As the gradient points

towards the steepest ascent, its negative points towards the steepest descent. Altering the

parameters in this direction should then decrease the loss value. This parameter update

can be expressed with the following equation, where 𝜃𝑖 is the parameter vector after the

𝑖-th iteration, 𝐸 is the loss function, 𝑓 is the model, (𝑥,𝑦) is the training data, and 𝜂 is the

learning rate.

𝜃𝑖+1 = 𝜃𝑖 − 𝜂∇𝐸 (𝑓𝜃𝑖 (𝑥), 𝑦) (2.13)

2.2.2. QuantumMachine Learning

As Machine Learning can often learn patterns from given datasets even in the presence of

noise, it is expected that Machine Learning applications can benefit from the computational

power of quantum computers even in the NISQ era [6, 5].

One approach for using quantum computers for Machine Learning is to use PQCs as the

model function of an otherwise classical optimization loop. This is referred to as a hybrid
approach [1, 11].

2.2.3. Optimization techniques

Although gradient-based optimizers are widely used in the field of Machine Learning,

other optimizers are available too. For the optimization of PQCs, Ostaszewski et al. present

an alternative approach that optimizes model parameters independently [14]. In “Structure
optimization for parameterized quantum circuits”, they observe that the expected loss value

P(𝑀 = |0⟩) of a PQC w.r.t. a single rotational Pauli gate parameter 𝜃 always has the

following mathematical structure.

P(𝑀 = |0⟩ |𝜃 ) = 𝑑1 + 𝑑3 · cos(𝜃 + 𝑑2) (2.14)

Here, 𝑑1, 𝑑2, 𝑑3 ∈ R are unknown constants independent of 𝜃 . The authors could recon-

struct these constants by evaluating the PQC with three select values for 𝜃 . As sinusoidal

functions are well understood, the minimum of this reconstructed function can be calcu-

lated analytically. It is mathematically easy to calculate their minimum once the function

is reconstructed.

9





3. Related work

The successful training of Quantum Machine Learning models relies on choosing an

optimization technique that can minimize the loss value effectively (see section 2.2). Most

optimizers rely on the computation or approximation of the model’s loss gradient w.r.t.

the model’s parameters. On the other hand, Rotosolve optimizes parameters of rotational

Pauli gates independently instead. This allows it to minimize these parameters analytically

instead of altering parameters in the direction of steepest descent [14]. In this thesis, I

present an extension of this method for a second type of parameterized gates (i.e., controlled

rotational Pauli gates). Another approach has recently been presented by Wierichs et

al..

In “General parameter-shift rules for quantum gradients” [20], Wierichs et al. observe that

the univariate expected value 𝐸 (𝜃 ) of a Variational Quantum Algorithm measurement can

be expressed as a finite Fourier series.

𝐸 (𝜃 ) = 𝑎0 +
𝑅∑︁
𝑙=1

𝑎𝑙 cos(Ω𝑙𝜃 ) + 𝑏𝑙 sin(Ω𝑙𝜃 )

Using a discrete Fourier transform, they computed the coefficients 𝑎𝑙 , 𝑏𝑙 , 1 ≤ 𝑙 ≤ 𝑅 of this

expression to reconstruct 𝐸 (𝜃 ) from a finite amount of circuit evaluations. This approach

is restricted to parameterized quantum circuits that can be expressed as a gate𝑈 (𝜃 ) = 𝑒𝑖𝜃𝐺

defined by a Hermitian generator 𝐺 . The 𝑅 frequencies Ω𝑙 , 1 ≤ 𝑙 ≤ 𝑅 can be derived from

the eigenvalues of the Hermitian generator 𝐺 .

To my knowledge, PennyLane is currently the only major quantum computing SDK im-

plementing a variant of the Rotosolve algorithm [2, 14]. PennyLane’s implementation

extends the original Rotosolve approach by usingWierichs’ general method to reconstruct

univariate loss functions. This requires the calculation of the frequency spectrum Ω𝑙 men-

tioned above prior to the first iteration of the optimizer. Only for parameters corresponding

to rotational Pauli gates, PennyLane’s Rotosolve implementation applies the eponymous

analytic methodology from Ostaszewski’s Rotosolve proposal. The Crotosolve optimizer

presented in chapter 4 can be considered a special case of PennyLane’s Rotosolve imple-

mentation, which has been optimized for controlled rotational Pauli gates.
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4. Crotosolve: Gradient-free controlled
rotational Pauli gate optimization

In chapter 2, I have presented how Quantum Machine Learning relies on optimizers to

gradually minimize the expectation value of a parameterized quantum circuit. While

many of these optimizers are gradient-based, the gradient-free Rotosolve optimizer by

Ostaszewski et al. treats the different parameters of PQCs independently [14]. By recon-

structing the univariate loss function of a rotational Pauli gate parameter, the minimizing

parameter value can be calculated analytically.

In this chapter, I present Crotosolve, a similar method for parameters of controlled rota-

tional Pauli gates. I first show in section 4.1 that the univariate loss curve of a controlled

rotational Pauli gate can be described as the sum of two sinusoidal functions with different

frequencies. To reproduce the concrete loss curve, the amplitudes of these functions as

well as their offsets in 𝑥- and 𝑦-direction need to be determined. In section 4.3, I show

how to determine these constants algorithmically using a minimum number of circuit

evaluations. Finally, I outline how to minimize this reconstruction in section 4.4.

4.1. Effect

I analyze the mathematical structure of the loss curve with respect to the parameter 𝜃 of

a single 𝐶𝑅𝑃 (𝜃 ) gate. Without loss of generality, I will assume a quantum circuit with

only two qubits and only a single 𝐶𝑅𝑃 (𝜃 ) gate, as shown in Figure 4.1. Before and after

the 𝐶𝑅𝑃 (𝜃 ) gate, the circuit can contain arbitrary gates that do not depend on 𝜃 . These

gates have been summarized as the 𝑈 and 𝑉 gates. Following the gates, a single qubit is

|0⟩
𝑈 𝑉

|0⟩ 𝑅𝑃 (𝜃 )

|𝜑 (𝜃 )⟩

Figure 4.1.: The analyzed quantum circuit is composed of gates 𝑈 , a controlled rotational

Pauli gate 𝐶𝑅𝑃 (𝜃 ), gates 𝑉 and a single measurement. |𝜑 (𝜃 )⟩ denotes the
quantum state immediately before the measurement.
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4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

measured. It should be noted that both the choice of the measured qubit and the choice

of the controlling qubit in the 𝐶𝑅𝑃 (𝜃 ) gate are irrelevant for this analysis, as different
choices can be covered with this circuit structure by appending or prepending swap gates

to𝑈 and 𝑉 .

The possible outcomes of the measurement are distributed randomly, and this distribution

depends on 𝜃 since the circuit depends on 𝜃 . The probability of measuring |0⟩ in the

measured qubit can be computed as the combination of all outcomes’ probabilities where

the measured qubit is |0⟩.

P(𝑀0 = |0⟩ | 𝜃 ) = P(𝑀 = |00⟩ | 𝜃 ) + P(𝑀 = |01⟩ | 𝜃 ) (4.1)

To resolve this result, I will show in section 4.2 that there are 𝑑1, . . . , 𝑑5 ∈ R so that

P(𝑀 = |𝛼⟩ | 𝜃 ) = 𝑑1 + 𝑑3 cos (𝜃/2 + 𝑑2) + 𝑑5 cos (𝜃 + 𝑑4). Using trigonometric identities,

Equation 4.1 can be simplified to a term of the same structure [4].

P (𝑀0 = |0⟩ | 𝜃 )
(4.1)
= P(𝑀 = |00⟩ | 𝜃 ) + P(𝑀 = |01⟩ | 𝜃 )
(4.11)
= 𝑑00

1
+ 𝑑00

3
cos

(
𝜃/2 + 𝑑00

2

)
+ 𝑑00

5
cos

(
𝜃 + 𝑑00

4

)
+ 𝑑01

1
+ 𝑑01

3
cos

(
𝜃/2 + 𝑑01

2

)
+ 𝑑01

5
cos

(
𝜃 + 𝑑01

4

)
= 𝑑1 + 𝑑3 cos (𝜃/2 + 𝑑2) + 𝑑5 cos (𝜃 + 𝑑4)

(4.2)

4.2. Single outcome probabilities

I will show in this section that there are constants 𝑑1, . . . , 𝑑5 ∈ R so that the probability of

a single outcome can be expressed with the following equation.

P (𝑀 = |𝛼⟩ | 𝜃 ) = 𝑑1 + 𝑑3 cos (𝜃/2 + 𝑑2) + 𝑑5 cos (𝜃 + 𝑑4) (4.3)

To find this equation, I will start with the general equation for the probability of a single

measurement and the definition of the 𝐶𝑅𝑃 (𝜃 ) gate. Successively, I will absorb terms that

are independent from 𝜃 into constants and combine sin and cos terms using trigonometric

identities from [4]. In this context, I will call terms constant if they are independent from

𝜃 . Note that these terms are not constant w.r.t. |𝛼⟩.

Let |𝛼⟩ be any state from the basis of the measurement. The probability of the measurement

to result in |𝛼⟩ can be computed from its overlap with |𝜑 (𝜃 )⟩, as introduced in section 2.1.

Here, |𝜑 (𝜃 )⟩ = 𝑉 ·𝐶𝑅𝑃 (𝜃 )·𝑈 |00⟩ denotes the quantum state just before themeasurement.
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4.2. Single outcome probabilities

P (𝑀 = |𝛼⟩ | 𝜃 ) = |⟨𝛼 |𝜑 (𝜃 )⟩|2

= |⟨𝛼 |𝑉 ·𝐶𝑅𝑃 (𝜃 ) ·𝑈 |0⟩|2

= ⟨𝛼 |𝑉 ·𝐶𝑅𝑃 (𝜃 ) ·𝑈 |0⟩ · ⟨𝛼 | ·𝑉 ·𝐶𝑅𝑃 (𝜃 ) ·𝑈 |0⟩
= ⟨𝛼 |𝑉︸︷︷︸

=:⟨𝛼 |

·𝐶𝑅𝑃 (𝜃 ) ·𝑈 |0⟩ · ⟨0| ·𝑈 †︸            ︷︷            ︸
=:𝐴

·𝐶𝑅𝑃 (𝜃 )† ·𝑉 † |𝛼⟩︸︷︷︸
=|𝛼⟩

= ⟨𝛼 |𝐶𝑅𝑃 (𝜃 ) · 𝐴 ·𝐶𝑅𝑃 (−𝜃 ) |𝛼⟩

(4.4)

Inserting the matrix definition of the controlled rotational Pauli gate, this term can be

multiplied out further.

P (𝑀 = |𝛼⟩ | 𝜃 ) (4.4)= ⟨𝛼 |𝐶𝑅𝑃 (𝜃 ) · 𝐴 ·𝐶𝑅𝑃 (−𝜃 ) |𝛼⟩
= ⟨𝛼 | ( |0⟩ ⟨0| ⊗ 𝐼 + |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 ))
· 𝐴 · ( |0⟩ ⟨0| ⊗ 𝐼 + |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩

= ⟨𝛼 | ( |0⟩ ⟨0| ⊗ 𝐼 )︸             ︷︷             ︸
=:⟨𝛾 |

·𝐴 · ( |0⟩ ⟨0| ⊗ 𝐼 ) |𝛼⟩︸             ︷︷             ︸
=:|𝛿⟩

+ ⟨𝛼 | ( |0⟩ ⟨0| ⊗ 𝐼 )︸             ︷︷             ︸
=⟨𝛾 |

·𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩

+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 ( |0⟩ ⟨0| ⊗ 𝐼 ) |𝛼⟩︸             ︷︷             ︸
=:|𝛿⟩

+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩
= ⟨𝛾 |𝐴 |𝛿⟩
+ ⟨𝛾 |𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩
+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 |𝛿⟩
+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩

(4.5)

As |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 ) is a block matrix, any product ⟨𝑥 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) |𝑦⟩ can be reduced

to

〈
𝑥↓

��𝑅𝑃 (𝜃 ) ��𝑦↓〉 where

��𝑥↓〉 contains the components from |𝑥⟩ corresponding to the

non-zero matrix block. The summands in Equation 4.5 can be further simplified by using

this reduction and inserting the matrix definition for 𝑅𝑃 (𝜃 ) gates, which was presented in

Equation 2.7. With these transformations, the second summand from Equation 4.5 resolves

to a sum of sin and cos functions of 𝜃 with frequency
1/2.

15



4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

⟨𝛾 |𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩
=

〈
𝛾↓

���𝐴↓ · 𝑅𝑃 (−𝜃 ) ���𝛼↓〉
=

〈
𝛾↓

���𝐴↓ · (cos (−𝜃/2) 𝐼 − 𝑖 sin (−𝜃/2) 𝑃) ���𝛼↓〉
= cos (−𝜃/2) ·

〈
𝛾↓

���𝐴↓ · 𝐼 ���𝛼↓〉
− 𝑖 sin (−𝜃/2) ·

〈
𝛾↓

���𝐴↓ · 𝑃 ���𝛼↓〉
= cos (𝜃/2) ·

〈
𝛾↓

���𝐴↓ · 𝐼 ���𝛼↓〉︸           ︷︷           ︸
=:𝑐1

+ sin (𝜃/2) · 𝑖 ·
〈
𝛾↓

���𝐴↓ · 𝑃 ���𝛼↓〉︸                ︷︷                ︸
=:𝑐2

= cos (𝜃/2) · 𝑐1 + sin (𝜃/2) · 𝑐2

(4.6)

Similarly, the third summand from Equation 4.5 resolves to a sum of sin and cos functions

of 𝜃 . While both the second and third summands have a similar mathematical shape, their

amplitude coefficients 𝑐1, 𝑐2 and 𝑐3, 𝑐4 may be different.

⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 |𝛿⟩
=

〈
𝛼↓

���𝑅𝑃 (𝜃 ) · 𝐴↓ ���𝛿↓〉
=

〈
𝛼↓

��� (cos (𝜃/2) 𝐼 − 𝑖 sin (𝜃/2) 𝑃) · 𝐴↓ ���𝛿↓〉
= cos (𝜃/2) ·

〈
𝛼↓

��� 𝐼 · 𝐴↓ ���𝛿↓〉
− 𝑖 sin (𝜃/2) ·

〈
𝛼↓

��� 𝑃 · 𝐴↓ ���𝛿↓〉
= cos (𝜃/2) ·

〈
𝛼↓

��� 𝐼 · 𝐴↓ ���𝛿↓〉︸           ︷︷           ︸
=:𝑐3

+ sin (𝜃/2) · (−𝑖) ·
〈
𝛼↓

��� 𝑃 · 𝐴↓ ���𝛿↓〉︸                     ︷︷                     ︸
=:𝑐4

= cos (𝜃/2) · 𝑐3 + sin (𝜃/2) · 𝑐4

(4.7)

To resolve the fourth term, the same ideas have to be applied multiple times. The summand

is left in a form of sin and cos functions, their squares and a product of sin and cos.
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4.2. Single outcome probabilities

⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩
=

〈
𝛼↓

���𝑅𝑃 (𝜃 ) · 𝐴↓ · 𝑅𝑃 (−𝜃 ) ���𝛼↓〉
=

〈
𝛼↓

��� (cos (𝜃/2) 𝐼 − 𝑖 sin (𝜃/2) 𝑃)
· 𝐴↓ · (cos (−𝜃/2) 𝐼 − 𝑖 sin (−𝜃/2) 𝑃)

���𝛼↓〉
= cos (𝜃/2) cos (−𝜃/2)

〈
𝛼↓

��� 𝐼 · 𝐴 · 𝐼 ���𝛼↓〉
+ cos (𝜃/2) sin (−𝜃/2) · (−𝑖) ·

〈
𝛼↓

��� 𝐼 · 𝐴 · 𝑃 ���𝛼↓〉
+ sin (𝜃/2) cos (−𝜃/2) · (−𝑖) ·

〈
𝛼↓

��� 𝑃 · 𝐴 · 𝐼 ���𝛼↓〉
+ sin (𝜃/2) sin (−𝜃/2) · (−𝑖)2 ·

〈
𝛼↓

��� 𝑃 · 𝐴 · 𝑃 ���𝛼↓〉
= cos (𝜃/2)2 ·

〈
𝛼↓

���𝐴 ���𝛼↓〉︸       ︷︷       ︸
=:𝑐5

+ cos (𝜃/2) sin (𝜃/2) · 𝑖 ·
〈
𝛼↓

���𝐴 · 𝑃 ���𝛼↓〉︸               ︷︷               ︸
=:𝑐6

+ sin (𝜃/2) cos (𝜃/2) · (−𝑖) ·
〈
𝛼↓

��� 𝑃 · 𝐴 ���𝛼↓〉︸                    ︷︷                    ︸
=:𝑐7

+ sin (𝜃/2)2 ·
〈
𝛼↓

��� 𝑃 · 𝐴 · 𝑃 ���𝛼↓〉︸               ︷︷               ︸
=:𝑐8

= cos (𝜃/2)2 · 𝑐5 + sin (𝜃/2)2 · 𝑐8 + cos (𝜃/2) sin (𝜃/2) · (𝑐6 + 𝑐7)

(4.8)

With Equations 4.6, 4.7, and 4.8, Equation 4.5 can be expressed as the following.

17



4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

P (𝑀 = |𝛼⟩ | 𝜃 ) (4.5)= ⟨𝛾 |𝐴 |𝛿⟩︸   ︷︷   ︸
=:𝑐9

+ ⟨𝛾 |𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩
+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 |𝛿⟩
+ ⟨𝛼 | ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (𝜃 )) · 𝐴 · ( |1⟩ ⟨1| ⊗ 𝑅𝑃 (−𝜃 )) |𝛼⟩

(4.6)
(4.7)
(4.8)
= 𝑐9

+ cos (𝜃/2) · 𝑐1 + sin (𝜃/2) · 𝑐2
+ cos (𝜃/2) · 𝑐3 + sin (𝜃/2) · 𝑐4
+ cos (𝜃/2)2 · 𝑐5 + sin (𝜃/2)2 · 𝑐8
+ cos (𝜃/2) sin (𝜃/2) · (𝑐6 + 𝑐7)

= 𝑐9

+ cos (𝜃/2) · (𝑐1 + 𝑐3) + sin (𝜃/2) · (𝑐2 + 𝑐4)
+ cos (𝜃/2)2 · 𝑐5 + sin (𝜃/2)2 · 𝑐8
+ cos (𝜃/2) sin (𝜃/2) · (𝑐6 + 𝑐7)

(4.9)

This equation is composed of many sin (𝜃/2) and cos (𝜃/2) terms which occur linearly or in

quadratic form. These products of sin (𝜃/2) and cos (𝜃/2) terms can be combined into linear

sin and cos with different frequencies. To calculate these product terms, the following

trigonometric identities are used [4].

cos
2 (𝜃 ) = 1

2

+ 1

2

cos (2𝜃 ) (4.10a)

sin
2 (𝜃 ) = 1

2

− 1

2

cos (2𝜃 ) (4.10b)

cos (𝜃 ) sin (𝜓 ) = 1

2

sin (𝜃 +𝜓 ) + 1

2

sin (𝜃 −𝜓 ) (4.10c)

𝑎 cos𝑥 + 𝑏 sin𝑥 = 𝑠𝑔𝑛(𝑎)
√
𝑎2 + 𝑏2 cos

(
𝑥 + arctan

(
−𝑏
𝑎

))
(4.10d)

Applying these identities to Equation 4.9 leaves the equation for the probability of a single

measurement outcome in the desired form.
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4.3. Determining the constants

P (𝑀 = |𝛼⟩ | 𝜃 ) (4.9)= 𝑐9

+ cos (𝜃/2) · (𝑐1 + 𝑐3) + sin (𝜃/2) · (𝑐2 + 𝑐4)
+ cos (𝜃/2)2 · 𝑐5 + sin (𝜃/2)2 · 𝑐8
+ cos (𝜃/2) sin (𝜃/2) · (𝑐6 + 𝑐7)

= 𝑐9

+ cos (𝜃/2) · (𝑐1 + 𝑐3) + sin (𝜃/2) · (𝑐2 + 𝑐4)

+
(
1

2

+ 1

2

cos (𝜃 )
)
· 𝑐5 +

(
1

2

− 1

2

cos (𝜃 )
)
· 𝑐8

+ 1

2

sin

(
𝜃

2

+ 𝜃
2

)
︸   ︷︷   ︸

=𝜃

+ 1
2

sin

(
𝜃

2

− 𝜃

2

)
︸           ︷︷           ︸

=0

= 𝑐9 +
𝑐5

2

+ 𝑐8
2

+ cos (𝜃/2) · (𝑐1 + 𝑐3) + sin (𝜃/2) · (𝑐2 + 𝑐4)

+ cos (𝜃 ) ·
(𝑐5
2

− 𝑐8

2

)
+ sin (𝜃 ) · 1

2

= 𝑐9 +
𝑐5

2

+ 𝑐8
2︸        ︷︷        ︸

=:𝑑1

+ cos
©­­­­­«
𝜃/2 + arctan

(
−𝑐2 + 𝑐4
𝑐1 + 𝑐3

)
︸                ︷︷                ︸

=:𝑑2

ª®®®®®¬
· 𝑠𝑔𝑛 (𝑐1 + 𝑐3)

√︁
(𝑐1 + 𝑐3)2 + (𝑐2 + 𝑐4)2︸                                         ︷︷                                         ︸
=:𝑑3

+ cos

©­­­­­­«
𝜃 + arctan

(
−

1

2

𝑐5
2
− 𝑐6

2

)
︸                 ︷︷                 ︸

=:𝑑4

ª®®®®®®¬
· 𝑠𝑔𝑛

(𝑐5
2

− 𝑐6

2

) √︄(𝑐5
2

− 𝑐6

2

)
2

+
(
1

2

)
2

︸                                        ︷︷                                        ︸
=:𝑑5

= 𝑑1 + cos (𝜃/2 + 𝑑2) · 𝑑3 + cos (𝜃 + 𝑑4) · 𝑑5
(4.11)

4.3. Determining the constants

Equation 4.2 describes the effect of the rotation angle parameter on the expected value

of a single qubit measurement. The simple structure of this formula comes at the cost of

five unknown constants 𝑑1, . . . , 𝑑5. While it is possible to compute those constants from

their definitions in Equation 4.5 - 4.11, this computation is as computationally expensive

as simulating the execution of the quantum circuit.
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4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

Instead, because of the sinusoidal nature of the function, the constants can be determined

through a few evaluations of the quantum circuit. To simplify the syntax, I will use 𝑦 (𝜃 )
to refer to the total expected value of the measurement and 𝑦1(𝜃 ), 𝑦2(𝜃 ) to refer to the two
sinusoidal functions that 𝑦 (𝜃 ) is composed of.

𝑦 (𝜃 ) : = P(𝑀0 = |0⟩ | 𝜃 )
= 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2)︸            ︷︷            ︸

=:𝑦1 (𝜃 )

+𝑑5 cos(𝜃 + 𝑑4)︸           ︷︷           ︸
=:𝑦2 (𝜃 )

= 𝑑1 + 𝑦1(𝜃 ) + 𝑦2(𝜃 )

(4.12)

We can analyze𝑦1 and𝑦2 separately by constructing interferences of𝑦 with a phase-shifted

version of itself. Note that cos(𝜓 + 𝜋) = − cos(𝜓 ), cos(𝜓 + 2𝜋) = cos(𝜓 ).

𝑦 (𝜃 ) + 𝑦 (𝜃 + 2𝜋) = 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2) + 𝑑5 cos(𝜃 + 𝑑4)
+ 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2 + 𝜋) + 𝑑5 cos(𝜃 + 𝑑4 + 2𝜋)

= 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2) + 𝑑5 cos(𝜃 + 𝑑4)
+ 𝑑1 − 𝑑3 cos(𝜃/2 + 𝑑2) + 𝑑5 cos(𝜃 + 𝑑4)

= 2𝑑1 + 2𝑑5 cos(𝜃 + 𝑑4)
= 2𝑑1 + 2𝑦2(𝜃 )

⇒ 𝑦2(𝜃 ) =
1

2

(𝑦 (𝜃 ) + 𝑦 (𝜃 + 2𝜋) − 2𝑑1)

(4.13)

Again, the interference of this function with itself can be used to eliminate 𝑦2.

𝑦 (𝜃 ) + 𝑦 (𝜃 + 𝜋) + 𝑦 (𝜃 + 2𝜋) + 𝑦 (𝜃 + 3𝜋)
= 𝑦 (𝜃 ) + 𝑦 (𝜃 + 2𝜋) + 𝑦 (𝜃 + 𝜋) + 𝑦 ((𝜃 + 𝜋) + 2𝜋)
4.13
= 2𝑑1 + 2𝑑5 cos(𝜃 + 𝑑4) + 2𝑑1 + 2𝑑5 cos(𝜃 + 𝜋 + 𝑑4)
= 2𝑑1 + 2𝑑5 cos(𝜃 + 𝑑4) + 2𝑑1 − 2𝑑5 cos(𝜃 + 𝑑4)
= 4𝑑1

⇒ 𝑑1 =
1

4

(𝑦 (𝜃 ) + 𝑦 (𝜃 + 𝜋) + 𝑦 (𝜃 + 2𝜋) + 𝑦 (𝜃 + 3𝜋))

(4.14)

With 𝑑1, we can now work with 𝑦2 to determine 𝑑4 and 5. To do so, we first need to catch

an edge case. If 𝑑5 = 0, then 𝑦2(𝜃 ) is 0 for all angles 𝜃 and 𝑑4 can be chosen arbitrarily.

Since sin and cos have distinct zeros, we can check for this condition with two evaluations

𝑦2(𝜃 ) and 𝑦2(𝜃 + 3/2𝜋).

𝑑5 = 0 ⇔
∧ {

0 = 𝑑5 cos(𝜃 + 𝑑4) = 𝑦2(𝜃 )
0 = 𝑑5 sin(𝜃 + 𝑑4) = cos(𝜃 + 𝑑4 + 3/2𝜋) = 𝑦2(𝜃 + 3/2𝜋)

(4.15)
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4.3. Determining the constants

If 𝑦2(𝜃 ) = 0 and 𝑦2(𝜃 + 3/2𝜋) ≠ 0, we can derive 𝑑4 and 𝑑5 as follows. Note that we restrict

the zeros of cos to be
1/2𝜋 or

3/2𝜋 without loss of generality since cos is 2𝜋-periodic. We can

further eliminate
3/2𝜋 since choosing

3/2𝜋 over
1/2𝜋 only changes the sign of the function,

which can also be chosen through its amplitude 𝑑5.

0 = 𝑦2(𝜃 ) = 𝑑5 cos(𝜃 + 𝑑4)
𝑑5≠0⇒ 𝜃 + 𝑑4 = 1/2𝜋
⇒ 𝑑4 = 1/2𝜋 − 𝜃

(4.16)

The corresponding amplitude can then be computed as

𝑦2(𝜃 + 3/2𝜋) = 𝑑5 cos(𝜃 + 𝑑4 + 3/2𝜋)
= 𝑑5 cos(1/2𝜋 + 3/2𝜋)
= 𝑑5 cos(2𝜋)
= 𝑑5 .

(4.17)

If 𝑦2(𝜃 ) ≠ 0, we can use the inverse of the tan function to compute 𝑑4.

𝑦2(𝜃 + 3/2𝜋)
𝑦2(𝜃 )

=
𝑑5 cos(𝜃 + 3/2𝜋 + 𝑑4)

𝑑5 cos(𝜃 + 𝑑4)

=
sin(𝜃 + 𝑑4)
cos(𝜃 + 𝑑4)

= tan(𝜃 + 𝑑4)

⇒ 𝜃 + 𝑑4 = arctan

(
𝑦2(𝜃 + 3/2𝜋)

𝑦2(𝜃 )

)
⇒ 𝑑4 = arctan

(
𝑦2(𝜃 + 3/2𝜋)

𝑦2(𝜃 )

)
− 𝜃

(4.18)

The computation of 𝑑5 then needs no additional circuit evaluations.

𝑦2(𝜃 ) = 𝑑5 cos(𝜃 + 𝑑4)

⇒ 𝑑5 =
𝑦2(𝜃 )

cos(𝜃 + 𝑑4)
(4.19)

A similar approach can be used to determine the remaining constants, 𝑑2 and 𝑑3. Again,

we use an interference of 𝑦 with a phase-shifted version of itself to find an equation with

only the missing constants.
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4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

𝑦 (𝜃 ) − 𝑦 (𝜃 + 2𝜋) = 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2) + 𝑑5 cos(𝜃 + 𝑑4)
− 𝑑1 − 𝑑3 cos(𝜃/2 + 𝜋 + 𝑑2) − 𝑑5 cos(𝜃 + 2𝜋 + 𝑑4)

= 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2) + 𝑑5 cos(𝜃 + 𝑑4)
− 𝑑1 + 𝑑3 cos(𝜃/2 + 𝑑2) − 𝑑5 cos(𝜃 + 𝑑4)

= 2𝑑3 cos(𝜃/2 + 𝑑2)
= 2𝑦1(𝜃 )

⇒ 𝑦1(𝜃 ) =
1

2

(𝑦 (𝜃 ) − 𝑦 (𝜃 + 2𝜋))

(4.20)

Similar to 4.13 to 4.18, the missing constants can be derived from this equation. First, we

handle the case where 𝑦1 zeroes out, and 𝑑2 can be chosen arbitrarily.

𝑑3 = 0 ⇔
∧ {

0 = 𝑑3 cos(𝜃/2 + 𝑑2) = 𝑦1(𝜃 )
0 = 𝑑3 sin(𝜃/2 + 𝑑2) = 𝑑3 cos(𝜃/2 + 𝑑2 + 3/2𝜋) = 𝑦1(𝜃 + 3𝜋)

(4.21)

Second, if 𝑦1(𝜃 ) = 0 but 𝑦1(𝜃 + 3𝜋) ≠ 0, 𝑑4 and 𝑑5 can be determined by choosing
𝜃/2 + 𝑑2

as a zero point of cos.

0 = 𝑦1(𝜃 ) = 𝑑3 cos(𝜃/2 + 𝑑2)
𝑑3≠0⇒ 1/2𝜋 = 𝜃/2 + 𝑑2

⇒ 1/2𝜋 − 𝜃/2 = 𝑑2

(4.22)

𝑦1(𝜃 + 3𝜋) = 𝑑3 cos(𝜃/2 + 𝑑2 + 3/2𝜋)
= 𝑑3 cos(1/2𝜋 + 3/2𝜋)
= 𝑑3 cos(2𝜋)
= 𝑑3

(4.23)

And third, we can determine 𝑑2 and 𝑑3 with the use of tan’s inverse if 𝑦1(𝜃 ) ≠ 0.

𝑦1(𝜃 + 3𝜋)
𝑦1(𝜃 )

=
𝑑3 cos(𝜃/2 + 3/2𝜋 + 𝑑2)

𝑑3 cos(𝜃/2 + 𝑑2)

=
sin(𝜃/2 + 𝑑2)
cos(𝜃/2 + 𝑑2)

= tan(𝜃/2 + 𝑑2)

⇒ 𝜃/2 + 𝑑2 = arctan

(
𝑦1(𝜃 + 3𝜋)

𝑦1(𝜃 )

)
⇒ 𝑑2 = arctan

(
𝑦1(𝜃 + 3𝜋)

𝑦1(𝜃 )

)
− 𝜃/2

(4.24)
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4.3. Determining the constants

𝑦1(𝜃 ) = 𝑑3 cos(𝜃/2 + 𝑑2)

⇒ 𝑑3 =
𝑦1(𝜃 )

cos(𝜃/2 + 𝑑2)
(4.25)

Therefore, the constants 𝑑1, . . . , 𝑑5 can be determined with a total of six quantum circuit

evaluations 𝑦 (𝜃 ), 𝑦 (𝜃 +𝜋), 𝑦 (𝜃 + 3/2𝜋), 𝑦 (𝜃 +2𝜋), 𝑦 (𝜃 +3𝜋) and 𝑦 (𝜃 + 7/2𝜋). For convenience,
they are summarized in the following. In cases where the loss function is independent of a

parameter 𝑑𝑖 , the arbitrary choice has been denoted with an asterisk ∗.

𝑑1 =
1

4

(𝑦 (𝜃 ) + 𝑦 (𝜃 + 2𝜋) + 𝑦 (𝜃 + 𝜋) + 𝑦 (𝜃 + 3𝜋)) (4.26a)

𝑑2 =


∗ , if 𝑦1(𝜃 ) = 0 = 𝑦1(𝜃 + 3𝜋)
1/2𝜋 − 𝜃/2 , if 𝑦1(𝜃 ) = 0 ≠ 𝑦1(𝜃 + 3𝜋)
arctan

(
𝑦1 (𝜃+3𝜋)
𝑦1 (𝜃 )

)
− 𝜃/2 , if 𝑦1(𝜃 ) ≠ 0

(4.26b)

𝑑3 =


0 , if 𝑦1(𝜃 ) = 0 = 𝑦1(𝜃 + 3𝜋)
𝑦1(𝜃 + 3𝜋) , if 𝑦1(𝜃 ) = 0 ≠ 𝑦1(𝜃 + 3𝜋)

𝑦1 (𝜃 )
cos(𝜃/2+𝑑2) , if 𝑦1(𝜃 ) ≠ 0

(4.26c)

𝑑4 =


∗ , if 𝑦2(𝜃 ) = 0 = 𝑦2(𝜃 + 3/2𝜋)
1/2𝜋 − 𝜃 , if 𝑦2(𝜃 ) = 0 ≠ 𝑦2(𝜃 + 3/2𝜋)
arctan

(
𝑦2 (𝜃+3/2𝜋)

𝑦2 (𝜃 )

)
− 𝜃 , if 𝑦2(𝜃 ) ≠ 0

(4.26d)

𝑑5 =


0 , if 𝑦2(𝜃 ) = 0 = 𝑦2(𝜃 + 3/2𝜋)
𝑦2(𝜃 + 3/2𝜋) , if 𝑦2(𝜃 ) = 0 ≠ 𝑦2(𝜃 + 3/2𝜋)

𝑦2 (𝜃 )
cos(𝜃+𝑑4) , if 𝑦2(𝜃 ) ≠ 0

(4.26e)

with

𝑦1(𝜃 ) =
1

2

(𝑦 (𝜃 ) − 𝑦 (𝜃 + 2𝜋)) (4.27a)

𝑦1(𝜃 + 3𝜋) =
1

2

(𝑦 (𝜃 + 3𝜋) − 𝑦 (𝜃 + 𝜋)) (4.27b)

𝑦2(𝜃 ) =
1

2

(𝑦 (𝜃 ) + 𝑦 (𝜃 + 2𝜋) − 2𝑑1) (4.27c)

𝑦2(𝜃 + 3/2𝜋) = 1

2

(𝑦 (𝜃 + 3/2𝜋) + 𝑦 (𝜃 + 7/2𝜋) − 2𝑑1) . (4.27d)
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4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

4.4. Minimizing the reconstruction

The previous sections have shown that the effect of a controlled rotational Pauli gate

parameter on the expected value of a circuit measurement can be expressed as a sum of

two sinusoidal functions. Crotosolve can use this cost-efficient reconstruction to optimize

a single CRP gate parameter. Therefore, the optimizer needs to find

𝜃𝑚𝑖𝑛 = argmin

𝜃∈[0,4𝜋]
𝑦 (𝜃 ) . (4.28)

Since 𝑦 (𝜃 ) is a univariate, real, and smooth function, a simple minimization strategy is to

use a numerical optimizer like the Nelder-Mead method [12]. As a sum of two sinusoidal

functions with frequencies 1 and
1/2, 𝑦 (𝜃 ) is 4𝜋-periodic and has either one or two local

minima
1
within the [0, 4𝜋] bounds. Thus, it is possible that the numerical optimizer

converges to a non-global minimum. The chances of running into the global minimum

can be increased by providing an estimate of 𝜃𝑚𝑖𝑛 as the initial value of the minimizer.

The calculation of such an estimate could be investigated in future work. Although it is

without proof or evidence from substantial experiments, I want to present a characteristic

of the 𝑦 (𝜃 ) function that I have observed to be a helpful initial value for the minimization.

Within the boundaries of [0, 4𝜋], 𝑦1(𝜃 ) has a single minimum 𝜃1 and 𝑦2(𝜃 ) has two equal

minima 𝜃2𝑎, 𝜃2𝑏 . Let 𝜃2 be the value of 𝜃2𝑎 or 𝜃2𝑏 that is the closest to 𝜃1 and let 𝜃 ∗𝑚𝑖𝑛 be

in the middle of 𝜃1 and 𝜃2. Then, the global minimum of 𝑦 (𝜃 ) is between 𝜃1 and 𝜃2 and

choosing 𝜃 ∗𝑚𝑖𝑛 as an initial value allows the numerical minimizer to converge towards

the global minimum 𝜃𝑚𝑖𝑛 . Here, the periodicity of 𝑦 (𝜃 ) needs to be considered in the

calculation of the distance and the middle of two values. Otherwise, a global minimum

near 𝜃 = 0 may not be recognized.

1
If𝑦 is constant, the number of minima is infinite. In this case, however, 𝜃 is irrelevant and anyminimization

result is optimal.
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5. Evaluation

To evaluate the quality of the algorithm proposed in chapter 4, I have implemented a proof-

of-concept optimizer. I will compare Crotosolve to several other optimizers frequently

used in QML by creating a loss curve benchmark for all optimizers. The benchmark

features parameterizable quantum circuits with various degrees of expressibility and from

various research applications.

5.1. Proof of Concept

To put the approach proposed in chapter 4 to test, I have implemented a proof-of-concept

application with PennyLane [2]. PennyLane is a popular quantum computing SDK with

extensive documentation and a library of readily implemented optimizers [19]. Particularly,

PennyLane is currently the only quantum SDK to implement the Rotosolve optimizer, to

which I want to compare my Crotosolve optimizer in section 5.2.

Like the Rotosolve algorithm, Crotosolve optimizes each parameter individually. For each

parameter corresponding to a controlled rotational Pauli gate, Crotosolve first reconstructs

the univariate cost function (see section 4.3) and then uses a numerical optimizer to find

the minimizing parameter value (see section 4.4). Each parameter corresponding to an

uncontrolled rotational Pauli gate can be optimized following the exact approach presented

by Ostaszewski et al. [14]. The pseudocode for this algorithm is stated in algorithm 1.

This algorithm allows the optimization of parameterized quantum circuits where all

parameterized gates are either RP or CRP gates. Furthermore, it is assumed that all gate

parameters are used without preprocessing (e.g., having a 𝑅𝑃 (𝑥2) gate for a parameter 𝑥 )

in only a single gate. The algorithm needs to know which parameters belong to CRP and

which belong to RP gates. Technically, the optimization approach presented for CRP gates

could also be used for RP gates since a CRP gate’s loss function structure is a generalization

of an RP gate’s loss function structure. However, using the CRP optimization approach

for RP gates would double the number of circuit evaluations required to reconstruct its

loss function. While it is trivial to see if a parameter is used in a CRP or RP gate on paper,

looking up this relationship in a given PennyLane circuit is non-trivial, although certainly

possible. Thus, the proof-of-concept implementation always stores the RP and CRP gate

parameters as separate arrays.
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5. Evaluation

Algorithm 1: The Crotosolve algorithm updates parameters individually

Data: 𝑝𝑟𝑒𝑣_𝑝𝑎𝑟𝑎𝑚𝑠 ∈ R𝑛
, 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 ∈ QNode

Result: 𝑝𝑎𝑟𝑎𝑚𝑠 ∈ R𝑛

1 𝑝𝑎𝑟𝑎𝑚𝑠 ← 𝑐𝑜𝑝𝑦 (𝑝𝑟𝑒𝑣_𝑝𝑎𝑟𝑎𝑚𝑠);
2 for 𝑝 ← 1 to 𝑛 do
3 𝑢𝑛𝑖 ← MakeUnivariate(𝑐𝑖𝑟𝑐𝑢𝑖𝑡 , 𝑝𝑎𝑟𝑎𝑚𝑠 , 𝑝);
4 if 𝑝 belongs to controlled gate then
5 𝑟𝑒𝑐𝑜𝑛 ← ReconstructCrp(𝑢𝑛𝑖) ; /* see section 4.3 */

6 𝑝𝑎𝑟𝑎𝑚𝑠 [𝑝] ← argmin

𝑥∈[0,4𝜋]
𝑟𝑒𝑐𝑜𝑛(𝑥) ; /* using numerical minimizer */

7 else
8 𝑝𝑎𝑟𝑎𝑚𝑠 [𝑝] ← RotosolveUpdate(𝑢𝑛𝑖);

9 end
10 end

5.2. Optimizer comparison

I will examine Crotosolve’s performance by comparing its loss curvewith the loss curves of

other optimizers frequently used in the field of QML. This comparison includes the Gradient

Descent family of optimizers, namely standard gradient descent with a fixed learning rate,

Adam [10] and Adagrad [7]. Additionally, I will test my Crotosolve implementation against

PennyLane’s implementation of the Rotosolve algorithm [14, 2], which is extended by

Wierichs’ paper on “General parameter-shift rules for quantum gradients” to support further
types of gates [20].

To get meaningful results, I chose to run these optimizers on well-known and widely-used

quantum circuits. Specifically, I use the set of circuit templates presented in a paper on

“Expressibility and Entangling Capability [...]” metrics by Sukin Sim et al. [17]. As shown in

this paper, these circuits have various degrees of expressibility and entangling capability.

The optimizers are compared through loss curves generated from exemplary circuits.

These loss curves are recorded with respect to the number of circuit evaluations, even

though it would be more common in classical Machine Learning to use the number of

iterations or taken time instead of the evaluations. The time taken to run these quantum

circuits on classical hardware using state-vector simulation is hardly representative of the

actual runtime on quantum devices since this simulation task is proven to be inefficient.

Additionally, the optimizers benefit to varying degrees from optimizations made in the

simulation. For example, gradient-based optimizers benefit from PennyLane’s gradient

evaluation optimization, which is unavailable on real quantum hardware. Meanwhile,

gradient-free optimizers like Crotosolve and Rotosolve cannot take advantage of these

simulation tricks. On the other hand, iterations put Crotosolve and Rotosolve in favor

since each of their iterations encompasses many univariate optimizations. Circuit evalua-

tions, however, are proportional to the execution time on real quantum hardware as long

as the classical work required between evaluations is negligible.
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Figure 5.1.: Various optimizers minimize the expectation of two circuits from [17] with four

qubits and three layers. Full lines show the average loss curve. Transparent

areas show the error, which is the average ± its standard deviation.

I have generated 100 random initial parameter sets for each circuit to reduce statistical

noise through averaging. Each pair of circuits and parameter values is run with each

optimizer to record the optimizer’s loss curve as a result. These results are then aggregated

in average loss curves for each pair of circuits and optimizers.

Figure 5.1 shows the average loss curves for each optimizer on circuits 11 and 14. I have

selected these charts as they show all the key characteristics described in the following,

but the charts for all other evaluated circuits can be found in Appendix A. Furthermore,

the circuit and initial values data for all evaluated circuits, as well as the recorded loss

curve datasets are available on GitHub [16].

Results

Crotosolve’s loss curve is generally very similar to Rotosolve’s loss curve, although

Crotosolve initially descends towards the minimum value slightly quicker. For RP gates,

this is easy to explain since both algorithms are identical. For CRP gates, both algorithms

use the same strategy, although different methods to achieve their common goal. Pen-

nyLane’s implementation of the Rotosolve algorithm proposed by Ostaszewski et al. is

augmented with the work of Wierichs et al. [20, 2]. This generalization allows the al-

gorithm to reconstruct the univariate loss function from almost any type of gate (see

chapter 3). While both Crotosolve and Rotosolve cache an evaluation value between

RP gate optimization steps, only Crotosolve does so for CRP gates too. This enhanced

caching ensures that Crotosolve’s loss curve is always slightly better than Rotosolve’s.

Crotosolve’s loss curves are also well below loss curves from gradient-based optimizers in

most instances. While Crotosolve, Rotosolve and Adam typically approach the minimum

value, −1, within the first 250 circuit evaluations, Stochastic Gradient Descent and
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Adagrad’s loss curves progress much slower towards this value. In direct comparison

with Adam, Crotosolve’s loss curve typically descends much quicker in the beginning and

reaches a point close to the minimum much more quickly. Still, Adam consistently reaches

final loss values as low as Crotosolve’s within the shown 250 iterations. Adam can even

reach lower final values in some cases. The cases in which Adam outperforms Crotosolve

match the cases in which circuit templates with many parameters have been used (i.e.,

circuit templates 05, 06, 13, and 14; see Appendix A). However, further investigation would

be required to confirm this correlation between the number of parameters and optimizer

performance.

It is worth noting that the loss curves of both Rotosolve and Crotosolve have a low

variance throughout the optimization process in all evaluated instances. This means

that the quick descent to the minimum value happens consistently across the evaluated

instances. On the other hand, the gradient-based optimizers show a much higher variance

in these experiments. More specifically, Stochastic Gradient Descent and Adagrad typi-

cally demonstrate a standard deviation of more than 0.2 throughout the entire optimization

process. Meanwhile, Adam shows a similar standard deviation in the beginning and quickly

progresses towards a standard deviation near zero as it approaches the 250 iterations.

5.3. Discussion

As demonstrated in this evaluation, Crotosolve can outperform gradient-based meth-

ods consistently on the circuits considered here. However, it should be noted that the

gradient-based optimizers have been used with their default hyperparameter values for

this evaluation. In many cases, achieving good results with Machine Learning optimizers

requires elaborate hyper-parameter tweaking. While this suggests that these optimizers

could potentially yield better results with hyper-parameter tweaking, it also demonstrates

that Crotosolve produces competitive and consistent results without relying on hyper-

parameter settings.

While Crotosolve shows slightly better results, PennyLane’s Rotosolve implementation

is more general due to Wierichs’ work on the reconstruction of arbitrary univariate loss

functions. This generality enables two use cases that are not covered by Crotosolve. First,

it allows Rotosolve to optimizer parameters used in gate types not explicitly covered in

the optimizer implementation, whereas Crotosolve requires specific implementations for

each parameterized gate type. Second, it enables Rotosolve to optimize parameters used in

multiple gates. While this is uncommon in parameterized quantum circuits designed to be

used with one parameter per gate, other variational algorithms like QAOA use parameters

to configure whole groups of gates. However, this generality comes at the cost of having

to compute the frequency spectrum for each parameter. This is computationally expensive

but still polynomial. It is sufficient to compute these frequencies once before the first

Rotosolve iteration.
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6. Conclusion

In this thesis, I have presented a generalization of Ostaszewski’s Rotosolve algorithm to

controlled rotational Pauli gates. Through mathematical analysis, I have characterized

the structure of a measurement expectation with respect to a CRP gate parameter. I have

demonstrated how targeted evaluations of the circuit with special parameter values can

be used to reconstruct this function.

Using this technique, I have implemented a proof-of-concept optimizer for parameterized

quantum circuits with parameterized rotational Pauli gates and parameterized controlled

rotational Pauli gates. In a benchmark with circuit templates [17] commonly used in the

field, I have shown that my Crotosolve implementation consistently converges quicker

towards an optimal value than other optimizers.

Meanwhile, PennyLane’s Rotosolve implementation uses results from Wierichs et al. [20]

to reconstruct univariate loss functions of arbitrary PQCs. It can handle PQCs where

multiple gates have a shared parameter and does not rely on specialized implementations

for different types of parameterized gates. While PennyLane’s Rotosolve implementation

is more general than the Crotosolve extension, Crotosolve’s loss curves are consistently

below theirs.

As Rotosolve and Crotosolve show competitive results compared to gradient-based opti-

mizers, their application should continue to be investigated. Future work on the approach

presented in this thesis could extend the optimizer to support more types of PQCs. Three

extensions come to mind: 1) the extension to support parameterized gates with more than

two qubits, for example the Deutsch gate𝐶𝐶𝑈 (𝜃 ), 2) the extension to PQCs where multiple

gates may be parameterized by the same parameter, and 3) the extension to support gates

that preprocess their parameter, for example 𝐶𝑅𝑃 (5𝜃 2). An actual implementation of

Crotosolve could also be improved by removing the need to separate parameters for 𝑅𝑃

and 𝐶𝑅𝑃 gates. To remove this separation, the implementation needs to detect which

parameter belongs to which type of gate. Furthermore, Crotosolve could benefit from

further work on the minimization of CRP loss functions. As pointed out in section 4.4,

the specific knowledge about CRP loss functions could be used to compute the minimum

value analytically or to set a better initial value for the numerical minimizer.

In PennyLane’s Rotosolve implementation, many of these improvements have already

been incorporated through the use of general parameter-shift rules [20]. Thus, future

work could combine Wierichs’ general reconstruction approach with the optimizations

presented in this thesis.
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A. Appendix

In section 5.2, I presented a characterization of the Crotosolve loss curve in comparison to

other optimizers used in Quantum Machine Learning. While the analysis was illustrated

with a single example, this section contains the loss curves of further PQCs. The circuit

ids referenced in the captions refer to the circuit template numbers from [17]. All tests

use circuits with four qubits and three template layers. The source code for the dataset

generation and visualization is available with the Crotosolve implementation [16].
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(a) Circuit 01 with 4 qubits and 3 layers
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(b) Circuit 02 with 4 qubits and 3 layers
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(c) Circuit 03 with 4 qubits and 3 layers
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(d) Circuit 04 with 4 qubits and 3 layers
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(e) Circuit 05 with 4 qubits and 3 layers
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(f) Circuit 06 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results
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(g) Circuit 07 with 4 qubits and 3 layers
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(h) Circuit 08 with 4 qubits and 3 layers
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(i) Circuit 09 with 4 qubits and 3 layers
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(j) Circuit 10 with 4 qubits and 3 layers
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(k) Circuit 11 with 4 qubits and 3 layers
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(l) Circuit 12 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)
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(m) Circuit 13 with 4 qubits and 3 layers
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(n) Circuit 14 with 4 qubits and 3 layers
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(o) Circuit 15 with 4 qubits and 3 layers
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(p) Circuit 16 with 4 qubits and 3 layers
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(q) Circuit 17 with 4 qubits and 3 layers
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(r) Circuit 18 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)
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(s) Circuit 19 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)
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