ST SCC

Karlsruhe Institute of Technology

Extending Gradient-Free Optimization of
Parameterized Quantum Circuits to
Controlled Pauli Gates

Bachelor’s Thesis of

Maximilian Tim Schweikart

At the KIT Department of Informatics
Steinbuch Centre for Computing

First examiner: Prof. Dr. Achim Streit
Second examiner: Prof. Dr. Bernhard Neumair

First advisor: Dr. Eileen Kuihn
Second advisor: Dr. Max Fischer

Aug. 22, 2023 - Dec. 22, 2023

Karlsruher Institut fiir Technologie
Fakultat fiir Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself. I
have not used any other than the aids that I have mentioned. I have marked all parts of the
thesis that I have included from referenced literature, either in their original wording or
paraphrasing their contents. I have followed the by-laws to implement scientific integrity
at KIT.

Karlsruhe, Dec. 22, 2023

(Maximilian Tim Schweikart)

Contents

1. Introduction

2. Background
2.1. A brief introduction to quantum computing
2.1.1. Multi-qubit-systems
2.1.2. Gatesandcircuits L
2.2. Quantum Machine Learning
2.2.1. Classical Machine Learning
2.2.2. Quantum Machine Learning
2.2.3. Optimization techniques

3. Related work

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization
41. Effect
4.2. Single outcome probabilities o Lo
4.3. Determining the constants L.
4.4. Minimizing the reconstruction L.

5. Evaluation
5.1. Proofof Concept.
5.2. Optimizer comparison. e
53. Discussion e

6. Conclusion
Bibliography

A. Appendix

O O 0 NN U1yl wWWwW

11

13
13
14
19
24

25
25
26
28

29

31

33

1. Introduction

While the first theoretical foundations of quantum computers have already been developed
in the 1980s, quantum computers have only recently gathered widespread attention with
the development and availability of real quantum computing hardware [13, 8]. The field is
evolving rapidly, with new tools, algorithms, and hardware being released every month.
Still, today’s quantum devices are subject to high amounts of noise, have a very limited
number of qubits, and are not fully connected. These limitations often further reduce the
number of available qubits and gates needed to perform a given task [5]. Researchers often
refer to these limited quantum devices as noisy intermediate-scale quantum (NISQ) devices
[15].

One promising idea for harnessing the computational power of quantum devices within the
NISQ era is to apply Machine Learning methodology to quantum computers [5]. Machine
Learning can often be used to approximate complex functions without requiring intricate
knowledge about their nature. Moreover, Machine Learning can compensate for or even
benefit from a limited amount of noise [6].

A typical Machine Learning workflow uses a parameterizable function as a so-called model
[3]. Machine Learning aims to choose parameters for the model so that the model maps
any given input data closely to the expected output data. In many iterations, an optimizer
evaluates the model function to compute the loss value, which indicates how much the
calculated value deviates from the expected output value. The optimizer uses these
evaluations to produce new parameter values and then repeats its assessment. This process
is known as training. Many state-of-the-art optimizers use an approach called gradient
descent to improve the model’s parameters [1]. Machine Learning has recently made a
tremendous leap due to the availability of computational resources and improvements in
model function design [9]. These improvements allow Machine-Learning applications to
train billions of parameters with terabytes of training data in many iterations.

A Parameterized Quantum Circuit (PQC) can replace the classical model function to transfer
the machine-learning methodology to quantum computers. PQCs are the quantum equiva-
lent of parameterized algorithms like neural networks [1]. Gradient-based optimizers can
be used for Quantum Machine Learning (QML) too, but the current price of NISQ devices
does not allow for large amounts of data and large numbers of iterations. Additionally,
each evaluation of a quantum circuit comprises multiple shots to decrease statistical noise
introduced by qubit measurement.

In “Structure optimization for parameterized quantum circuits,” Ostaszewski et al. explore a
different optimization approach [14]. They observed that the univariate expected value

1. Introduction

of a PQC w.r.t. a single rotational Pauli gate parameter is always sinusoidal. Using three
circuit evaluations with select parameter values, they could reconstruct this univariate loss
function for every parameter value. Since the curve of sine functions is well-understood,
they could then analytically calculate the parameter value that minimizes this univariate
loss function. The Rotosolve optimizer uses this approach to optimize each parameter
individually. While univariate optimization does not guarantee convergence to the global
minimum, experiments show good results with this approach compared to state-of-the-art
optimizers such as Adam and SPSA [10, 18, 14]. However, the original Rotosolve approach
was limited to optimizing parameters of single-qubit gates.

These promising results naturally pose the question of whether this approach can be ex-
tended to other types of gates. Because of their similarity with the studied rotational gates,
this bachelor’s thesis presents Crotosolve, an extension of the Rotosolve optimization
technique for controlled rotational Pauli gates.

To develop and investigate the Crotosolve idea, this thesis is structured as follows. First,
in chapter 2, I summarize the theoretical background in quantum computing, Machine
Learning, and Quantum Machine Learning required to understand the idea and proof
behind Crotosolve. Chapter 4 analyzes the mathematical structure of a controlled rota-
tional Pauli gate parameter’s univariate effect on the expected value of a quantum circuit
measurement. It also contains a constructive proof for an algorithm that can be used to
determine the prefactors and offsets characterizing the effect function’s specific curve.

The Crotosolve algorithm is evaluated in chapter 5. I present a proof-of-concept implemen-
tation in PennyLane, a major quantum computing SDK [2, 19]. Using this implementation
and PennyLane’s Rotosolve [14], Adam [10], Adagrad [7], and Stochastic Gradient De-
scent implementation, I create a benchmark of their loss curves. The data gathered in this
benchmark shows that Crotosolve outperforms the other optimizers in most cases. Its
loss value progresses towards the minimum value much quicker and more consistently
in comparison to its competitors. However, in cases with high numbers of parameters,
the gradient-based Adam optimizer shows a slightly better final result. Even in this case,
Crotosolve progression towards low loss values is steeper. A comprehensive discussion
of this evaluation can be found in section 5.3.

While I believe Crotosolve to be the first implementation that exploits the sinusoidal
structure of CRP gate loss functions explicitly, other gradient-free approaches have been
developed in the recent years. In chapter 3, I outline how contributions by Wierichs et al.
allow the reconstruction of univariate loss functions of almost arbitrary PQCs [20]. These
results have already been implemented in PennyLane’s Rotosolve implementation and
were evaluated as part of chapter 5.

Finally, in chapter 6, I present a summary of the contributions from this thesis. Further-
more, I outline how some of the optimizations of my Crotosolve implementation and
the Wierichs-improved implementation of Rotosolve could be fused in an optimizer that
combines their advantages.

The proof-of-concept implementation as well as the code and benchmark data of my
evaluation are available on GitHub and Zenodo [16].

2. Background

This chapter introduces the theoretical background for understanding the idea behind
Crotosolve. Rather than giving a complete overview of the field, this text is strictly
focused on aspects critical for proving the optimizer’s correctness and understanding its
applications. I will first present an introduction to the theory of quantum information
processing using qubits, gates, and circuits. Following this introduction, I will also give a
quick introduction to the field of Machine Learning. I will show how Quantum Machine
Learning applies the ideas from Machine Learning to quantum processing devices. The final
section of this chapter will focus on state-of-the-art classical and quantum optimization
techniques in particular. One of these optimization methods is Rotosolve, which I will
present with further detail. These basic ideas are also fundamental for the Crotosolve
algorithm, which will be developed in the next chapter.

2.1. Abrief introduction to quantum computing

At its core, the operation of a quantum computer revolves around gates and qubits. Qubits
(quantum bits) make up the data register of a quantum computer. Just like a classical bit
can be in the 0 or 1 state, a qubit can be in a corresponding |0) or |1) state. Besides these
two basis states, however, quantum bits can be in a superposition of these two states,

V) =ao-10) +ay- 1),

where the probability amplitudes a, &; € C can be any complex numbers with |ao|* +
|a1|* = 1. The superposable character of a qubit essentially increases its expressibility
in comparison to a classical, digital bit from the discrete set {0, 1} to the complex, two-
dimensional sphere surface {52 eC?| |&|2}. Thus, a quantum computer with a single qubit
can work with continuous, multidimensional data, while a classical computer with a single
bit can only work with a single boolean value.

Due to the laws of quantum mechanics, this multidimensional superposition state collapses
into one of its discrete basis states upon observation. More specifically, this means that
measuring the value of a qubit cannot reveal its probability amplitudes and instead turns
the state into either |0) (i.e, @y = 1,a; = 0) or |1) (i.e., @y = 0, a; = 1)!. The probability of

Technically, it is possible to measure the state in a different basis, like |+) = % and |-) = |O>\7§|1> .

However, this will not be necessary for the development of Crotosolve.

2. Background

|0)
=)
B L T
w R)
[+
1)

Figure 2.1.: The Bloch sphere can represent the state |/) = e (cos g |0) + e'® sing |1>) of

a single qubit, ignoring its global phase. ¢ specifies the rotation of the state
around the Z axis (|0) — |1)). 0 specifies the rotation of the state relative to
the XY plane (X axis: |[-) — |+), Y axis: |[L) — |R)).

the qubit collapsing into either of these states is given by the squared absolute value of its
probability amplitude,

P(M = |n)) = |an|*, n € {0,1}.

Thus, the normalization of the probability amplitudes, >’,c(o 1} lan|* = 1, is in fact a
normalization of the probability distribution over the given basis states. While it is
physically impossible to observe ay and «; directly, their squared absolute values still
influence the outcome of observation M. If the same® quantum state can be prepared
many times, |, |* can be estimated as the relative frequency from an empirical probability
distribution of M.

Since only the absolute value of ay and «; influences the measurement outcome, it is
common to rewrite the state as follows.

¥) = a0 [0) + a1 [1)

; 0 , 0 2.1
=e' cosE|0>+el"’ sin§|1> @1)

In this representation, e'Y has no effect on the outcome of measurement M because |eiY| =1.
That is why the global phase y is often ignored. The remaining two variables 6 and ¢ can be
interpreted as coordinates on the so-called Bloch sphere, which is shown in Figure 2.1.

2Two quantum states Y, &, [n) and Y, B, |n) are the same if all of their probability amplitudes are the same,
ie., an = B,Vn.

2.1. A brief introduction to quantum computing

2.1.1. Multi-qubit-systems

The separated state of several qubits can be combined into a multi-qubit state through the
Kronecker product. With two qubits, this results in

(a0 [0) + 1 1)) ® (B [0) + f1 1))
=0f0 10) ® [0) + o1 [0) ® [1) + a1 |1) ® |0) + a1 fy [1) © [1)

2.2
= (Zoﬁo |00> + aoﬁl |01> + a’lﬁo |10> + Ollﬂl |11> . ()
=Yoo =Yo1 =Y10 =y

with >, c0001,10,11} lyal* = 1. T use natural numbers instead of bitstrings to simplify the
notation in the following. For example, Equation 2.2 can be compactly rewritten to the
following.

Yoo [00) + yo1 |[01) + y10 [10) + y11 |11)
=Y0l0) +y111) +y22) +y33)

3
= > vl
j=0

(2.3)

Similarly to this two-qubit example, a system with n separate qubit states |/;),1 < i < ncan
be described with a product state. In this system, the probability amplitudes yy, ..., y2n—1 €
C of the standard basis states |0), ..., |2" — 1) are again given by the multiplication and
form a probability distribution through their squared absolute values.

2"-1 2"—1

)=y = >, viliy with > [y =1 (2.4)
i=1 j=0 j=0

2.1.2. Gates and circuits

Unlike with classical bits and gates, it is physically impossible for a quantum computer to
create copies of a qubit. While classical computers typically read (i.e., copy), transform
(e.g., add two numbers), and write data from and to registers, quantum computers can
only perform in-place operations.

Quantum states can be changed by applying operators to them. Since the state of an n-
qubit-system can be described through its probability amplitudes y;, we can represent this
state with a 2"-dimensional complex vector. If we identify |0) = (1 O)T and [1) = (0 l)T,
equation 2.4 implicitly leaves us with

2. Background

o~

Figure 2.2.: In this single-qubit quantum circuit, a Hadamard gate is applied to the qubit
before it is measured. This circuit will probabilistically output |0) just as often
as |1).

Yor
lyry=1: |- (2.5)
Yir

Universal quantum computers allow us to apply operations to these states that are described
by unitary matrices®. Such an operation is referred to as a gate in quantum computing.
Gates can act on one or multiple qubits, and bigger gates can be composed by computing
the Kronecker product of gates.

The application of gates to a system of qubits can be visualized through quantum circuits.
In these circuits, each qubit is displayed as a horizontal line, and gates are displayed as
boxes that overlay the lines of the qubits they are applied to. Measurements are indicated
by a box with a meter inside.

Take for example the Hadamard gate H,

1 {1 1
ne (). ”

V2

Applying the Hadamard gate to a single qubit will transform the |0) state into % |0)+ % |1)
1

V2
Figure 2.2 visualizes the application of a Hadamard gate in a quantum circuit.

and |1) into % |0) — —=|1), which are both equal superpositions of the original states.

All single-qubit gates U € C*** can be represented by products of rotational Pauli gates
RX(0),RY(0) and RZ(0),

RP (0) = cos (g) Iy —i-sin (g) -P, Pe{X,Y,Z} (2.7)

These gates are called parameterized gates since they can be adjusted by a continuous
parameter ¢ € [0, 2r]. The Hadamard gate, for example, can be written as H = RX () -
RY (0.57).

Single-qubit operations can be simulated trivially by computing the product of the gate
matrices and the state vector.

3A matrix A € CN*N is called unitary if and only if its conjugate transpose is its inverse, i.e. AT =A"1

2.2. Quantum Machine Learning

The problem gets more interesting with two-qubit gates. For example, the controlled X
gate (also known as CNOT) works on a system of two qubits and maps the basis states as
follows:

1000
0100

CX={y 0 0 1 (2.8)
0010

CX |00) = |00) (2.9)

Ccx|o1) = |01) (2.10)

CX |10) = |11) (2.11)

CX [11) = |10) (2.12)

When applying the CX gate to states from the computational basis, the second bit is
flipped (X is applied) if and only if the first bit is |1). States other than those from the
computational basis might, however, not follow this simple principle. The |++) state, for
example, is transformed into the |-+) = CX |++) state, changing the control qubit but not
the target qubit.

2.2. Quantum Machine Learning

Today’s quantum devices are far from ideal implementations of the qubits, gates, and
circuits presented in section 2.1. Noise is a major limitation of today’s quantum devices.
Noise is hard to describe completely since it can be the result of a multitude of factors. For
example, noise can be accumulated over time by unwanted interactions of the physical
qubit implementation with the outside world. Additionally, the number of qubits on today’s
quantum devices is limited to a couple dozen or a couple hundred. On quantum computers
with high numbers of qubits, the connection topology is incomplete, as this simplifies the
architecture of the physical system. This means that multi-qubit gates cannot be applied to
arbitrary groups of qubits directly. This limitation can be mitigated through the application
of swap gates prior to the multi-qubit gate application, however, this further increases the
quantum computer’s exposure to noise. The limitations of today’s quantum devices are
collectively referred to as the noisy intermediate-scale quantum (NISQ) era [15, 13].

Research suggests that Quantum Machine Learning and Variational Quantum Algorithms
may produce useful results even in the presence of NISQ limitations [5]. In the following
section, I will first introduce a few ideas from classical Machine Learning. Using these
results, I will present several approaches to Quantum Machine Learning. I will focus on
optimization techniques in particular, as from Chapter 4 onwards, I will introduce a new
optimizer that can produce results in this regime with high efficiency.

2. Background

Expec‘te_cl Ou‘tpu‘t%
Input . __Output Loss Fn
ba‘to\; [Paro\me,‘te_ﬁzo\ue, FvJ Doctor

A

New Porowms Loss

| \4

[Optimizer]

Figure 2.3.: In a typical supervised Machine Learning optimization loop, the optimizer runs
the model with training data to compute a loss value. It updates the model’s
parameters to reduce the loss value in the next evaluation. Through many
iterations of this process, the model learns the relation between input and
output data [3].

"l_rox.ln‘.mj
Dataset

2.2.1. Classical Machine Learning

According to Bishop [3], Machine Learning typically aims to find and reproduce a pattern
in a dataset. In a supervised Machine Learning task, a set of input data is given together
with its corresponding output data. This data could, for example, be the results of an
experiment where the input represents the parameters of the experiment and the output
represents the measurement results corresponding to these parameters. The goal of a
supervised Machine Learning task is to recognize the relation between input and output
data to predict output values from input values. We measure the quality of the Machine
Learning results with a loss value, which is a real number representing how much the
predicted values deviate from the correct values from the output data set.

Many approaches in Machine Learning use a parameterizable model function to express
the mapping from input to output. An optimizer feeds data into the model and compares
the model’s prediction with the correct output to determine the loss value. Based on this
loss value, it updates the parameters of the model aiming to produce a better loss value in
the next model evaluation. The repeated process of evaluating test data with the model
and updating the model’s parameters based on the generated loss value is often referred to
as the optimization loop. The optimization loop of a supervised Machine Learning process
is visualized in Figure 2.3.

It should be noted that supervised learning is not the only type of Machine Learning task.
Unsupervised learning tasks, for example, can be implemented without given output data.
In this case, the loss value must be determined from the model output without relying
on any given ideal output data. When applying Machine Learning to an optimization
problem, the loss value is typically the negative objective value of the output proposed by
the model function.

The success of a Machine Learning task depends on the careful selection of training
data, loss function, model, and the optimizer. For the optimizer, a common choice is

2.2. Quantum Machine Learning

Gradient Descent. In each optimization iteration, the optimizer computes the gradient of
the loss value from the model output w.r.t. the model parameters. As the gradient points
towards the steepest ascent, its negative points towards the steepest descent. Altering the
parameters in this direction should then decrease the loss value. This parameter update
can be expressed with the following equation, where 6; is the parameter vector after the
i-th iteration, E is the loss function, f is the model, (x, y) is the training data, and 7 is the
learning rate.

Oi+1 = 0; = nVE(fp,(x).y) (2.13)

2.2.2. Quantum Machine Learning

As Machine Learning can often learn patterns from given datasets even in the presence of
noise, it is expected that Machine Learning applications can benefit from the computational
power of quantum computers even in the NISQ era [6, 5].

One approach for using quantum computers for Machine Learning is to use PQCs as the
model function of an otherwise classical optimization loop. This is referred to as a hybrid
approach [1, 11].

2.2.3. Optimization techniques

Although gradient-based optimizers are widely used in the field of Machine Learning,
other optimizers are available too. For the optimization of PQCs, Ostaszewski et al. present
an alternative approach that optimizes model parameters independently [14]. In “Structure
optimization for parameterized quantum circuits”, they observe that the expected loss value
P(M =]0)) of a PQC w.r.t. a single rotational Pauli gate parameter 6 always has the
following mathematical structure.

P(M = [0 |6) = d; + ds - cos(0 + dy) (2.14)

Here, di, d,, ds € R are unknown constants independent of 6. The authors could recon-
struct these constants by evaluating the PQC with three select values for 8. As sinusoidal
functions are well understood, the minimum of this reconstructed function can be calcu-
lated analytically. It is mathematically easy to calculate their minimum once the function
is reconstructed.

3. Related work

The successful training of Quantum Machine Learning models relies on choosing an
optimization technique that can minimize the loss value effectively (see section 2.2). Most
optimizers rely on the computation or approximation of the model’s loss gradient w.r.t.
the model’s parameters. On the other hand, Rotosolve optimizes parameters of rotational
Pauli gates independently instead. This allows it to minimize these parameters analytically
instead of altering parameters in the direction of steepest descent [14]. In this thesis, I
present an extension of this method for a second type of parameterized gates (i.e., controlled
rotational Pauli gates). Another approach has recently been presented by Wierichs et
al..

In “General parameter-shift rules for quantum gradients” [20], Wierichs et al. observe that
the univariate expected value E(0) of a Variational Quantum Algorithm measurement can
be expressed as a finite Fourier series.

R
E(0) = ap+ Z a; cos(;0) + by sin(Q;0)

I=1

Using a discrete Fourier transform, they computed the coefficients a;, b;,1 < I < R of this
expression to reconstruct E(0) from a finite amount of circuit evaluations. This approach
is restricted to parameterized quantum circuits that can be expressed as a gate U(6) = ¢'%C
defined by a Hermitian generator G. The R frequencies Q;,1 < I < R can be derived from
the eigenvalues of the Hermitian generator G.

To my knowledge, PennyLane is currently the only major quantum computing SDK im-
plementing a variant of the Rotosolve algorithm [2, 14]. PennyLane’s implementation
extends the original Rotosolve approach by using Wierichs’ general method to reconstruct
univariate loss functions. This requires the calculation of the frequency spectrum Q; men-
tioned above prior to the first iteration of the optimizer. Only for parameters corresponding
to rotational Pauli gates, PennyLane’s Rotosolve implementation applies the eponymous
analytic methodology from Ostaszewski’s Rotosolve proposal. The Crotosolve optimizer
presented in chapter 4 can be considered a special case of PennyLane’s Rotosolve imple-
mentation, which has been optimized for controlled rotational Pauli gates.

11

4. Crotosolve: Gradient-free controlled
rotational Pauli gate optimization

In chapter 2, I have presented how Quantum Machine Learning relies on optimizers to
gradually minimize the expectation value of a parameterized quantum circuit. While
many of these optimizers are gradient-based, the gradient-free Rotosolve optimizer by
Ostaszewski et al. treats the different parameters of PQCs independently [14]. By recon-
structing the univariate loss function of a rotational Pauli gate parameter, the minimizing
parameter value can be calculated analytically.

In this chapter, I present Crotosolve, a similar method for parameters of controlled rota-
tional Pauli gates. I first show in section 4.1 that the univariate loss curve of a controlled
rotational Pauli gate can be described as the sum of two sinusoidal functions with different
frequencies. To reproduce the concrete loss curve, the amplitudes of these functions as
well as their offsets in x- and y-direction need to be determined. In section 4.3, I show
how to determine these constants algorithmically using a minimum number of circuit
evaluations. Finally, I outline how to minimize this reconstruction in section 4.4.

4.1. Effect

I analyze the mathematical structure of the loss curve with respect to the parameter 0 of
a single CRP(0) gate. Without loss of generality, I will assume a quantum circuit with
only two qubits and only a single CRP(6) gate, as shown in Figure 4.1. Before and after
the CRP(6) gate, the circuit can contain arbitrary gates that do not depend on 6. These
gates have been summarized as the U and V gates. Following the gates, a single qubit is

10) ~

10) RP(0) i

Figure 4.1.: The analyzed quantum circuit is composed of gates U, a controlled rotational
Pauli gate CRP(6), gates V and a single measurement. |¢(60)) denotes the
quantum state immediately before the measurement.

13

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

measured. It should be noted that both the choice of the measured qubit and the choice
of the controlling qubit in the CRP(0) gate are irrelevant for this analysis, as different
choices can be covered with this circuit structure by appending or prepending swap gates
toUand V.

The possible outcomes of the measurement are distributed randomly, and this distribution
depends on 0 since the circuit depends on 6. The probability of measuring |0) in the
measured qubit can be computed as the combination of all outcomes’ probabilities where
the measured qubit is |0).

P(Mo = 10) | 0) = P(M = [00) | 0) + P(M = |01) | 6) (4.1)

To resolve this result, I will show in section 4.2 that there are d;,...,ds € R so that
P(M = |a) | 8) = dy +dscos(?/2+dz) + ds cos (6 +dy). Using trigonometric identities,
Equation 4.1 can be simplified to a term of the same structure [4].

P (Mo = [0y | 0) & B(M = [00) | 0) + P(M = [01) | 0)

(LY 100 4 490 cos (9f2 +) + d2° cos (6 + d2°) (4.2)

+d¥ +dY cos (%) +d3') +d2* cos (0 +dY)
=dy +dscos (?2+ds) +ds cos (0 +dy)

4.2. Single outcome probabilities

I will show in this section that there are constants dy, ..., ds € R so that the probability of
a single outcome can be expressed with the following equation.

P(M=|a)|0)=d;+dscos(?2+dy)+dscos (0 +d,) (4.3)

To find this equation, I will start with the general equation for the probability of a single
measurement and the definition of the CRP(0) gate. Successively, I will absorb terms that
are independent from 6 into constants and combine sin and cos terms using trigonometric
identities from [4]. In this context, I will call terms constant if they are independent from
0. Note that these terms are not constant w.r.t. |&).

Let |@) be any state from the basis of the measurement. The probability of the measurement
to result in |ar) can be computed from its overlap with |¢(0)), as introduced in section 2.1.
Here, |¢(0)) = V-CRP(6)-U |00) denotes the quantum state just before the measurement.

14

4.2. Single outcome probabilities

P (M= l|a) | 0) = Kalp(6))|*
= [{a|V - CRP(6) - U |0)|?
= {(a|V - CRP(0) - U |0) - (a| - V - CRP(6) - U |0)

= (a|V -CRP(0) - U |0) - (0| - UT -CRP(0)" - VT |}
N—— D — N————
=(d| =A =|a)

— (& CRP(8) - A - CRP(~0) |&)

(4.4)

Inserting the matrix definition of the controlled rotational Pauli gate, this term can be
multiplied out further.

P(M=|a) | 0) 2 (| CRP(6) - A - CRP(~6) |&)

=(al (10) (0] ® I +1) (1| ® RP (0))
A - (10) (0] @ I +[1) (1] ® RP (=0)) |@)
= (a| (|0) 0l ® I) -A - (|0) (0] ® I) | @)

=yl =0)
+(a| (10) (0| ® I) -A - (|1) (1| ® RP (-0)) |a)
—_—
=yl (4.5)

+(a| (|1) (1] ® RP (0)) - A (|0) (0] ® I) |ax)
~— —————
=:|8)

+(a| ([1) (1] @ RP (0)) - A - (|1) (1| ® RP (=0)) |&)
= (y|Al6)

+(ylA- ([1) (1] @ RP (=0)) |@)

+(a| ([1)(1{®@ RP (0)) - A|5)

+(a| (11) (1] ®@ RP (0)) - A - (|1) (1| @ RP (=0)) |&)

As |1) (1] ® RP(0) is a block matrix, any product (x| (|1) (1| ® RP(#)) |y) can be reduced
to <xl|RP(9) |yl> where |xl> contains the components from |x) corresponding to the
non-zero matrix block. The summands in Equation 4.5 can be further simplified by using
this reduction and inserting the matrix definition for RP(6) gates, which was presented in
Equation 2.7. With these transformations, the second summand from Equation 4.5 resolves
to a sum of sin and cos functions of 6 with frequency /2.

15

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

(rlA-(11) (1] ® RP (-0)) |a)
= <yl‘Al -RP (-0) ‘o}l)
= (y}| AL+ (cos (—=0p) T = isin (~) P) [a)
= cos (=0)5) - (yl‘Al . 1‘@)
~ isin (~9p) - <yl‘Al : p(&l>
= cos (%)) - (] 4t - 1]a)

~————
=iy

+ sin (9/2) - i - (yl

Ab.P ‘dl)

=iC2

=cos (?)2) - ¢y +sin (?)2) - ¢y

Similarly, the third summand from Equation 4.5 resolves to a sum of sin and cos functions
of 6. While both the second and third summands have a similar mathematical shape, their
amplitude coefficients c;, ¢; and c3, ¢4 may be different.

(a| (1) (1| @ RP (6)) - A|5)
= (&l)RP (0) - Al ‘5l)

= (O}l

= cos (%)) - <0?l 1-A 5l>

(cos (°/2) I — isin (0/2) P) - At (5l>

—isin (%)) - <dijp Al ‘5i)

=cos (%) - (&l I-A 5l>
————

=:iC3

+sin (%) - (i) - (&l‘P Al ‘5l)

=:iC4

=cos (?)2) - c3 +sin (9)2) - ¢4

To resolve the fourth term, the same ideas have to be applied multiple times. The summand
is left in a form of sin and cos functions, their squares and a product of sin and cos.

16

4.2. Single outcome probabilities

(af (11) (1] ® RP (0)) - A- (|1) (1] ® RP (=0)) |a)

_ (dl(RP) - AL - RP (~0))&l)
- (dl

- Al (cos (=9/) I — isin (—=9)2) P) ‘dl>

(cos (?)2) I —isin (?)2) P)

= cos (%)) cos (=0)2) (&l| [-A-T (&l>
+ cos (012) sin (=0/2) - (—i) - (dl) [-A-P (&l)
+sin (92) cos (=0)2) - (=i) - (&ljp A 1(5&)
+ sin (92) sin (=0/2) - (—=i)? - (dl|p AP ‘di)
= cos ()2)? - (&l‘A‘dl)

————
=iC5

+cos (9/2) sin (%f2) - i - (@‘A p ‘d¢>

=:Ce

+ sin (9/2) cos (9/2) - (—i) - <0~cl‘P -A ‘dl>

=:iC7

+ sin (02)? - (&l(P AP ‘dl>

=:iCg

= cos (9/2)% - ¢s5 + sin (9/2)% - ¢ + cos (°/2) sin (9/2) - (cg + ¢7)

With Equations 4.6, 4.7, and 4.8, Equation 4.5 can be expressed as the following.

(4.8)

17

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

P(M=la) | 0) 2 (yAl6)

S
=C9

+(ylA- ([1) (1] ® RP (=0)) |&)
+(a| (]11) (1[®@ RP (0)) - A|5)

+(a| (|1) (1] ® RP (0)) - A - (|1) (1| ® RP (-0)) |)
o
(4.8)
=’ ¢
+ cos (?)2) - ¢y +sin (9)2) - ¢y
+cos (?/2) - c3 +sin (9/2) - ¢4
+cos (/2)? - c5 + sin (9/2)? - cg
+ cos (?/2) sin (?/)2) - (¢cg + ¢7)
= ¢o
+cos (9/2) - (c1 +c3) +sin (9)2) - (co + cq)
+cos (92)% - c5 +sin (9)2)% - ¢g
+ cos (?/)2) sin (?/)2) - (¢c¢ + ¢7)

This equation is composed of many sin (?/2) and cos (¢/2) terms which occur linearly or in
quadratic form. These products of sin (?/2) and cos (?/2) terms can be combined into linear
sin and cos with different frequencies. To calculate these product terms, the following
trigonometric identities are used [4].

cos® (0) = % + % cos (20) (4.10a)

sin? () = % _ %cos (20) (4.10b)

cos (6) sin () = % sin (0 +) + % sin (0 — 1) (4.10¢)
acosx +bsinx = sgn(a) Va? + b2 cos (x + arctan (—g)) (4.10d)

Applying these identities to Equation 4.9 leaves the equation for the probability of a single
measurement outcome in the desired form.

18

4.3. Determining the constants

(4.9)
=" ¢9

+cos (?)2) - (c1 + c3) +sin (9/)2) - (cz + cq)
+cos (9/2)? - ¢5 + sin (9)2)? - cg
+ cos (?/2) sin (?/2) - (¢¢ + ¢7)

P(M=|a) | 0)

+cos (?)2) - (c1 + ¢3) +sin (9/)2) - (ca + c4)

+(%+%cos(9))-05+(%—%cos(9)) - Cg

1. (6 6\ 1. (6 0
+-sin|—+—|+=-sin|- - -
2 2 2 2 2 2
—_—— —m —
=0 =0
C
:Cg+—5+c—8
2 2

+ cos (?)2) - (c1 +¢3) +sin (9/2) - (co + ¢4)

C; €3 . 1
+ cos (0 -(———)+s1n 0) - -
) (2 -2) +sin(0)-
s ¢
:Cg+—5+—8
2 2
~—
=:d1
co+c
+ cos| /2 + arctan (— 2 4) -sgn (c1 +c3) V(er +¢3)? + (cp + cq)?
€1T¢C3
=:d3
=:d2
1 2
2 c c c Co\2 1
+cos| 0 +arctan | ——— _Sgn(_s__s) (_5__6) +(_)
S _% 2 2 2 2 2
:;d4 :Zd5

=d; + cos (9/2 + dz) - ds

+cos (0 +dy) - ds

4.3. Determining the constants

Equation 4.2 describes the effect of the rotation angle parameter on the expected value
of a single qubit measurement. The simple structure of this formula comes at the cost of

five unknown constants d, . .

., ds. While it is possible to compute those constants from

their definitions in Equation 4.5 - 4.11, this computation is as computationally expensive
as simulating the execution of the quantum circuit.

19

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

Instead, because of the sinusoidal nature of the function, the constants can be determined
through a few evaluations of the quantum circuit. To simplify the syntax, I will use y(6)
to refer to the total expected value of the measurement and y; (), y2(0) to refer to the two
sinusoidal functions that y(0) is composed of.

y(0) : =P(Mo =10) | 0)

=d; +d;cos(?)2+dz) +ds cos(0 + dy)
(4.12)

=y1(0) =y2(0)
=d; +y1(0) +y2(0)

We can analyze y; and y; separately by constructing interferences of y with a phase-shifted
version of itself. Note that cos(y +) = — cos(y/), cos({ + 27) = cos(¢).

y(0) +y(0 + 2m) = dy + d3 cos(?)2+ dy) + ds cos(0 + dy)
+dy +dszcos(?/2+dy + 1) + ds cos(0 + dy + 27)
=d; +d;cos(?)2+ds) +dscos(0 +dy)
+dy — d3 cos(?/2+ dy) +ds cos(0 +dy)
= 2d; + 2ds5 cos(0 + dy)
= 2d; + 2y,(0)

= 12(0) = S (y(0) +y(0 + 27) - 24y)

(4.13)

Again, the interference of this function with itself can be used to eliminate y.

y(0) +y(0+) +y(0+27)+y(0+3m)
=y(0)+y(@+2r)+y(@+m)+y((0+m)+2m)

2% 2d, + 2ds cos(0 + dy) + 2d, + 2ds cos(0 + 7 + dy)

= 2d1 + 2d5 COS(Q + d4) + 2d1 - 2d5 COS(G + d4)
B 4d1

(4.14)

—d = i(y(@) +y(0+) +y(0+27m) +y (6 + 37))

With d;, we can now work with y, to determine d4 and 5. To do so, we first need to catch
an edge case. If ds5 = 0, then y,(0) is 0 for all angles 8 and d4 can be chosen arbitrarily.
Since sin and cos have distinct zeros, we can check for this condition with two evaluations

y2(0) and y, (0 + 3/21).

le0 o /\ 0 = ds cos(0 +dy) = y(0) (4.15)
° 0 = ds sin(0 + dy) = cos(0 + dy +3/27) = (0 +3/or) '

20

4.3. Determining the constants

If y,(0) = 0 and y2(0 + 3/2rr) # 0, we can derive dy4 and ds as follows. Note that we restrict
the zeros of cos to be /2t or 3/t without loss of generality since cos is 27-periodic. We can
further eliminate 3/2r since choosing 3/2r over /2 only changes the sign of the function,
which can also be chosen through its amplitude ds.

0 =y,(0) =dscos(0 +dy)

I Ry (4.16)
= d4 = 1/271' -0

The corresponding amplitude can then be computed as

Y2(0 +3)2mr) = ds cos(0 + dy + 3/orr)
= d5 cos(1/amr + 3/2r)

(4.17)
= ds5 cos(2rm)
=ds.
If y2(0) # 0, we can use the inverse of the tan function to compute d;.
Y2(0 +3forr) dscos(0 +3)em +dy)
y2(0) dscos(0+dy)
_ sin(0 +dy)
~ cos(0+d,)
= tan(6 + dy) (4.18)
0 +3
= 0 +d,; = arctan (M)
y2(0)
0 +3
= d4 = arctan (M) -0
y2(0)
The computation of d5 then needs no additional circuit evaluations.
Y2(0) = ds cos(0 + dy)
y2(0) (4.19)

&= 29
=5 o0+ dy)

A similar approach can be used to determine the remaining constants, d, and ds. Again,
we use an interference of y with a phase-shifted version of itself to find an equation with
only the missing constants.

21

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

y(0) —y(0 +2m) =dy +dscos(/)2+ dy) + ds cos(0 + dy)
—di —dscos(?)2+ m+dy) —dscos(0 +2r +dy)
=d; +dscos(?/2+dy) +dscos(0+dy)
—dy +dscos(?)2+dy) — ds cos(6 +dy)
= 2d3 cos(?/)2+ d>)
=2y1(0)

= 5:(0) = 5 (4(0) - y(0+27)

(4.20)

Similar to 4.13 to 4.18, the missing constants can be derived from this equation. First, we
handle the case where y; zeroes out, and d, can be chosen arbitrarily.

oo o A 0 =d;cos(?22+dy) =y1(0) (4.21)
- 0 =dssin(?/2+dy) = dscos(/2+ dy +3/2m) = y1(0 + 37) .

Second, if y;(0) = 0 but y;(0 + 37) # 0, ds and d5 can be determined by choosing /2 + d;
as a zero point of cos.

0 =y1(0) =dscos(?)2+d,)

d3#0
= o =0+ d, (4.22)

= lhr—-9L=d,

y1(0 +37m) = dscos(?)2+ dy + 3)omr)
= d3 cos(l/emr + 3/)2rr)

(4.23)
= d; cos(2r)
=ds
And third, we can determine d, and ds; with the use of tan’s inverse if y;(6) # 0.
y1(0+3m) dscos(%)2+3fam +dy)
y1(0) ~ dscos(?)2+dy)
_ sin(%/2+dy)
~ cos(?z+dy)
=tan(?2+ d) (4.24)
= %/ +d, = arctan (M)
y1(0)
0+3
= d, = arctan (M) — 0/
y1(0)

22

4.3. Determining the constants

Therefore, the constants d, . .

y1(0) = ds cos(?/2 + dy)

:>d3:

y1(0) (4.25)
cos(?)2+d5)

., ds can be determined with a total of six quantum circuit

evaluations y(0), y(0+), y(0+3/2m), y(0+27), y(6 +37) and y(6 +7/2r). For convenience,
they are summarized in the following. In cases where the loss function is independent of a
parameter d;, the arbitrary choice has been denoted with an asterisk .

d2:<

d3:<

1
d, = Z(y(@) +y(0+2r) +y(0+m)+y(0+3n)) (4.26a)
* ify1(0) =0=y1(0+3m)
U — 0/, if y;(0) = 0 # y,(0 + 37) (4.26b)
arctan (%) —0f, ify;(0) #£0
0, ify1(0) =0=y1(0+3m)
y1(0+3m), ify,(0)=0#y.(0+3m) (4.26¢)
cosy(lgﬁzg-zdz) > if y1(9) #0
* if y2(0) = 0 = y2(0 + 3/orr)
Vot — 0, if y2(0) = 0 # yo(0 + 3/o) (4.26d)

Y2 (9+3/27f)

arctan (72 (0)

0,

)—9, if y2(0) £ 0

if y(0) = 0 = y2(0 +3/orr)

ds = 3y2(0 +3fm), ify,(0) =0 # y,(0 +3/err) (4.26€)
SO ify(6) # 0
with
0(0) = > (y(0) — y(0+21)) (4.272)
y1(0+37) = %(y(@ +371) —y(0+ 1)) (4.27b)
2(6) = - (4(8) +y(0 + 27) — 24)) (4270
U2 (0 + o) = %(y(@ +3ht) +y(0+ 7o) — 2dy) | (4.27d)

23

4. Crotosolve: Gradient-free controlled rotational Pauli gate optimization

4.4. Minimizing the reconstruction

The previous sections have shown that the effect of a controlled rotational Pauli gate
parameter on the expected value of a circuit measurement can be expressed as a sum of
two sinusoidal functions. Crotosolve can use this cost-efficient reconstruction to optimize
a single CRP gate parameter. Therefore, the optimizer needs to find

Omin = argminy(0) . (4.28)
0e[0,47]

Since y(0) is a univariate, real, and smooth function, a simple minimization strategy is to
use a numerical optimizer like the Nelder-Mead method [12]. As a sum of two sinusoidal
functions with frequencies 1 and !/2, y(0) is 4z-periodic and has either one or two local
minima! within the [0,47] bounds. Thus, it is possible that the numerical optimizer
converges to a non-global minimum. The chances of running into the global minimum
can be increased by providing an estimate of 6, as the initial value of the minimizer.

The calculation of such an estimate could be investigated in future work. Although it is
without proof or evidence from substantial experiments, I want to present a characteristic
of the y(0) function that I have observed to be a helpful initial value for the minimization.
Within the boundaries of [0, 47], y;(0) has a single minimum 6; and y,(60) has two equal
minima 0,4, 055. Let 0, be the value of 0, or 0, that is the closest to 0, and let) . be
in the middle of 0; and 6,. Then, the global minimum of y(6) is between 6; and 6, and
choosing 0, as an initial value allows the numerical minimizer to converge towards
the global minimum 6,,;,. Here, the periodicity of y(0) needs to be considered in the
calculation of the distance and the middle of two values. Otherwise, a global minimum

near 0 = 0 may not be recognized.

11f y is constant, the number of minima is infinite. In this case, however, 6 is irrelevant and any minimization
result is optimal.

24

5. Evaluation

To evaluate the quality of the algorithm proposed in chapter 4, I have implemented a proof-
of-concept optimizer. I will compare Crotosolve to several other optimizers frequently
used in QML by creating a loss curve benchmark for all optimizers. The benchmark
features parameterizable quantum circuits with various degrees of expressibility and from
various research applications.

5.1. Proof of Concept

To put the approach proposed in chapter 4 to test, I have implemented a proof-of-concept
application with PennyLane [2]. PennyLane is a popular quantum computing SDK with
extensive documentation and a library of readily implemented optimizers [19]. Particularly,
PennyLane is currently the only quantum SDK to implement the Rotosolve optimizer, to
which I want to compare my Crotosolve optimizer in section 5.2.

Like the Rotosolve algorithm, Crotosolve optimizes each parameter individually. For each
parameter corresponding to a controlled rotational Pauli gate, Crotosolve first reconstructs
the univariate cost function (see section 4.3) and then uses a numerical optimizer to find
the minimizing parameter value (see section 4.4). Each parameter corresponding to an
uncontrolled rotational Pauli gate can be optimized following the exact approach presented
by Ostaszewski et al. [14]. The pseudocode for this algorithm is stated in algorithm 1.

This algorithm allows the optimization of parameterized quantum circuits where all
parameterized gates are either RP or CRP gates. Furthermore, it is assumed that all gate
parameters are used without preprocessing (e.g., having a RP(x?) gate for a parameter x)
in only a single gate. The algorithm needs to know which parameters belong to CRP and
which belong to RP gates. Technically, the optimization approach presented for CRP gates
could also be used for RP gates since a CRP gate’s loss function structure is a generalization
of an RP gate’s loss function structure. However, using the CRP optimization approach
for RP gates would double the number of circuit evaluations required to reconstruct its
loss function. While it is trivial to see if a parameter is used in a CRP or RP gate on paper,
looking up this relationship in a given PennyLane circuit is non-trivial, although certainly
possible. Thus, the proof-of-concept implementation always stores the RP and CRP gate
parameters as separate arrays.

25

A G R W N =

N

10

5. Evaluation

Algorithm 1: The Crotosolve algorithm updates parameters individually

Data: prev_params € R", circuit € QNode
Result: params € R"

params «— copy(prev_params);
forp «— 1tondo
uni «— MakeUnivariate(circuit, params, p);
if p belongs to controlled gate then
recon <— ReconstructCrp(uni) ; /* see section 4.3 x/

params[p] « argminrecon(x) ; /* using numerical minimizer x*/
x€[0,47]

else
‘ params|[p] < RotosolveUpdate(uni);
end

end

5.2. Optimizer comparison

I'will examine Crotosolve’s performance by comparing its loss curve with the loss curves of
other optimizers frequently used in the field of QML. This comparison includes the Gradient
Descent family of optimizers, namely standard gradient descent with a fixed learning rate,
Adam [10] and Adagrad [7]. Additionally, I will test my Crotosolve implementation against
PennyLane’s implementation of the Rotosolve algorithm [14, 2], which is extended by
Wierichs’ paper on “General parameter-shift rules for quantum gradients” to support further
types of gates [20].

To get meaningful results, I chose to run these optimizers on well-known and widely-used
quantum circuits. Specifically, I use the set of circuit templates presented in a paper on
“Expressibility and Entangling Capability [...]” metrics by Sukin Sim et al. [17]. As shown in
this paper, these circuits have various degrees of expressibility and entangling capability.

The optimizers are compared through loss curves generated from exemplary circuits.
These loss curves are recorded with respect to the number of circuit evaluations, even
though it would be more common in classical Machine Learning to use the number of
iterations or taken time instead of the evaluations. The time taken to run these quantum
circuits on classical hardware using state-vector simulation is hardly representative of the
actual runtime on quantum devices since this simulation task is proven to be inefficient.
Additionally, the optimizers benefit to varying degrees from optimizations made in the
simulation. For example, gradient-based optimizers benefit from PennyLane’s gradient
evaluation optimization, which is unavailable on real quantum hardware. Meanwhile,
gradient-free optimizers like Crotosolve and Rotosolve cannot take advantage of these
simulation tricks. On the other hand, iterations put Crotosolve and Rotosolve in favor
since each of their iterations encompasses many univariate optimizations. Circuit evalua-
tions, however, are proportional to the execution time on real quantum hardware as long
as the classical work required between evaluations is negligible.

26

5.2. Optimizer comparison

—— Adagrad —— Adagrad
Gradient Descent 1.0 Gradient Descent

—— Rotosolve —— Rotosolve

—— Crotosolve —— Crotosolve

0.5 —— Adam 0.5 —— Adam

1.09

0.0 1

-0.5 \ -0.51

1.0 -1.04

0.0 4

Loss
Loss

0 50 100 150 200 250 0 50 100 150 200 250
No. of Circuit Evaluations No. of Circuit Evaluations

(a) Circuit 11 (b) Circuit 14

Figure 5.1.: Various optimizers minimize the expectation of two circuits from [17] with four
qubits and three layers. Full lines show the average loss curve. Transparent
areas show the error, which is the average + its standard deviation.

I have generated 100 random initial parameter sets for each circuit to reduce statistical
noise through averaging. Each pair of circuits and parameter values is run with each
optimizer to record the optimizer’s loss curve as a result. These results are then aggregated
in average loss curves for each pair of circuits and optimizers.

Figure 5.1 shows the average loss curves for each optimizer on circuits 11 and 14. I have
selected these charts as they show all the key characteristics described in the following,
but the charts for all other evaluated circuits can be found in Appendix A. Furthermore,
the circuit and initial values data for all evaluated circuits, as well as the recorded loss
curve datasets are available on GitHub [16].

Results

Crotosolve’s loss curve is generally very similar to Rotosolve’s loss curve, although
Crotosolve initially descends towards the minimum value slightly quicker. For RP gates,
this is easy to explain since both algorithms are identical. For CRP gates, both algorithms
use the same strategy, although different methods to achieve their common goal. Pen-
nyLane’s implementation of the Rotosolve algorithm proposed by Ostaszewski et al. is
augmented with the work of Wierichs et al. [20, 2]. This generalization allows the al-
gorithm to reconstruct the univariate loss function from almost any type of gate (see
chapter 3). While both Crotosolve and Rotosolve cache an evaluation value between
RP gate optimization steps, only Crotosolve does so for CRP gates too. This enhanced
caching ensures that Crotosolve’s loss curve is always slightly better than Rotosolve’s.

Crotosolve’s loss curves are also well below loss curves from gradient-based optimizers in
most instances. While Crotosolve, Rotosolve and Adam typically approach the minimum
value, —1, within the first 250 circuit evaluations, Stochastic Gradient Descent and

27

5. Evaluation

Adagrad’s loss curves progress much slower towards this value. In direct comparison
with Adam, Crotosolve’s loss curve typically descends much quicker in the beginning and
reaches a point close to the minimum much more quickly. Still, Adam consistently reaches
final loss values as low as Crotosolve’s within the shown 250 iterations. Adam can even
reach lower final values in some cases. The cases in which Adam outperforms Crotosolve
match the cases in which circuit templates with many parameters have been used (i.e.,
circuit templates 05, 06, 13, and 14; see Appendix A). However, further investigation would
be required to confirm this correlation between the number of parameters and optimizer
performance.

It is worth noting that the loss curves of both Rotosolve and Crotosolve have a low
variance throughout the optimization process in all evaluated instances. This means
that the quick descent to the minimum value happens consistently across the evaluated
instances. On the other hand, the gradient-based optimizers show a much higher variance
in these experiments. More specifically, Stochastic Gradient Descent and Adagrad typi-
cally demonstrate a standard deviation of more than 0.2 throughout the entire optimization
process. Meanwhile, Adam shows a similar standard deviation in the beginning and quickly
progresses towards a standard deviation near zero as it approaches the 250 iterations.

5.3. Discussion

As demonstrated in this evaluation, Crotosolve can outperform gradient-based meth-
ods consistently on the circuits considered here. However, it should be noted that the
gradient-based optimizers have been used with their default hyperparameter values for
this evaluation. In many cases, achieving good results with Machine Learning optimizers
requires elaborate hyper-parameter tweaking. While this suggests that these optimizers
could potentially yield better results with hyper-parameter tweaking, it also demonstrates
that Crotosolve produces competitive and consistent results without relying on hyper-
parameter settings.

While Crotosolve shows slightly better results, PennyLane’s Rotosolve implementation
is more general due to Wierichs’ work on the reconstruction of arbitrary univariate loss
functions. This generality enables two use cases that are not covered by Crotosolve. First,
it allows Rotosolve to optimizer parameters used in gate types not explicitly covered in
the optimizer implementation, whereas Crotosolve requires specific implementations for
each parameterized gate type. Second, it enables Rotosolve to optimize parameters used in
multiple gates. While this is uncommon in parameterized quantum circuits designed to be
used with one parameter per gate, other variational algorithms like QAOA use parameters
to configure whole groups of gates. However, this generality comes at the cost of having
to compute the frequency spectrum for each parameter. This is computationally expensive
but still polynomial. It is sufficient to compute these frequencies once before the first
Rotosolve iteration.

28

6. Conclusion

In this thesis, I have presented a generalization of Ostaszewski’s Rotosolve algorithm to
controlled rotational Pauli gates. Through mathematical analysis, I have characterized
the structure of a measurement expectation with respect to a CRP gate parameter. I have
demonstrated how targeted evaluations of the circuit with special parameter values can
be used to reconstruct this function.

Using this technique, I have implemented a proof-of-concept optimizer for parameterized
quantum circuits with parameterized rotational Pauli gates and parameterized controlled
rotational Pauli gates. In a benchmark with circuit templates [17] commonly used in the
field, I have shown that my Crotosolve implementation consistently converges quicker
towards an optimal value than other optimizers.

Meanwhile, PennyLane’s Rotosolve implementation uses results from Wierichs et al. [20]
to reconstruct univariate loss functions of arbitrary PQCs. It can handle PQCs where
multiple gates have a shared parameter and does not rely on specialized implementations
for different types of parameterized gates. While PennyLane’s Rotosolve implementation
is more general than the Crotosolve extension, Crotosolve’s loss curves are consistently
below theirs.

As Rotosolve and Crotosolve show competitive results compared to gradient-based opti-
mizers, their application should continue to be investigated. Future work on the approach
presented in this thesis could extend the optimizer to support more types of PQCs. Three
extensions come to mind: 1) the extension to support parameterized gates with more than
two qubits, for example the Deutsch gate CCU (0), 2) the extension to PQCs where multiple
gates may be parameterized by the same parameter, and 3) the extension to support gates
that preprocess their parameter, for example CRP(56%). An actual implementation of
Crotosolve could also be improved by removing the need to separate parameters for RP
and CRP gates. To remove this separation, the implementation needs to detect which
parameter belongs to which type of gate. Furthermore, Crotosolve could benefit from
further work on the minimization of CRP loss functions. As pointed out in section 4.4,
the specific knowledge about CRP loss functions could be used to compute the minimum
value analytically or to set a better initial value for the numerical minimizer.

In PennyLane’s Rotosolve implementation, many of these improvements have already
been incorporated through the use of general parameter-shift rules [20]. Thus, future
work could combine Wierichs’ general reconstruction approach with the optimizations
presented in this thesis.

29

Bibliography

[1]

(2]

(3]

Marcello Benedetti et al. “Parameterized quantum circuits as machine learning mod-
els”. In: Quantum Science and Technology 4.4 (Nov. 2019). Publisher: IOP Publishing,
p- 043001. 1SSN: 2058-9565. DOI: 10.1088/2058-9565/ab4eb5.

Ville Bergholm et al. PennyLane: Automatic differentiation of hybrid quantum-classical
computations. 2018. poI: 10.48550/arXiv.1811.04968.

Christopher M. Bishop. Pattern recognition and machine learning. Information science
and statistics. New York, NY: Springer, 2006. 1SBN: 978-0-387-31073-2. URL: https:
//1link.springer.com/book/9780387310732.

I’ja N. Bronstejn. Taschenbuch der Mathematik. Ed. by Konstantin A. Semend-
jaev, Gerhard Musiol, and Heiner Miihlig. 10., iberarbeitete Auflage. Edition Harri
Deutsch. Haan-Gruiten: Verlag Europa-Lehrmittel - Nourney, Vollmer GmbH & Co.
KG, 2016. 1sBN: 978-3-8085-5790-7. URL: https://d-nb.info/1081907711.

M. Cerezo et al. “Variational quantum algorithms”. In: Nature Reviews Physics 3.9
(Sept. 1, 2021), pp. 625-644. 1sSN: 2522-5820. DOI: 10.1038/542254-021-00348-9.

Carlo Ciliberto et al. “Quantum machine learning: a classical perspective”. In: Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
474.2209 (2018). por: 10.1098/rspa.2017.0551.

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization”. In: J. Mach. Learn. Res. 12 (July 2011),
Pp- 2121-2159. 1SSN: 1532-4435.

Jack D. Hidary. Quantum Computing: An Applied Approach. Second edition. Cham,
Switzerland: Springer, 2021. 1SBN: 978-3-030-83273-5. URL: https://doi.org/10.
1007/978-3-030-83274-2.

M. L. Jordan and T. M. Mitchell. “Machine learning: Trends, perspectives, and
prospects”. In: Science 349.6245 (2015), pp. 255-260. DOI: 10.1126/science.aaa8415.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. DOI: 10.48550/arXiv.1412.6980.

K. Mitarai et al. “Quantum circuit learning”. In: Physical Review A 98.3 (Sept. 2018).
Publisher: American Physical Society (APS). po1: 10.1103/physreva.98.032309.

J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4 (Jan. 1965), pp. 308-313. 1ssN: 0010-4620. DOI: 10.1093/comjnl/
7.4.308.

31

https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.48550/arXiv.1811.04968
https://link.springer.com/book/9780387310732
https://link.springer.com/book/9780387310732
https://d-nb.info/1081907711
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1007/978-3-030-83274-2
https://doi.org/10.1007/978-3-030-83274-2
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308

Bibliography

[13]

32

Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum infor-
mation. 9th ed. Cambridge: Cambridge Univ. Press, 2007. 1sBN: 978-0-521-63503-5.
URL: https://www.cambridge.org/9780521635035.

Mateusz Ostaszewski, Edward Grant, and Marcello Benedetti. “Structure optimiza-
tion for parameterized quantum circuits”. In: Quantum 5 (Jan. 2021). Publisher:
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften,
p. 391. 1ssN: 2521-327X. DOI: 10.22331/q-26021-01-28-391.

John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2
(Aug. 2018). Publisher: Verein zur Forderung des Open Access Publizierens in den
Quantenwissenschaften, p. 79. 1ssN: 2521-327X. poI: 10.22331/q-2018-08-06- 79.

Max Schweikart. schweikart/crotosolve. Version v0.1.0. Dec. 2023. URL: https://doi.
org/10.5281/zenodo.10413938.

Sukin Sim, Peter D. Johnson, and Alan Aspuru-Guzik. “Expressibility and Entan-
gling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical
Algorithms”. In: Advanced Quantum Technologies 2.12 (2019). po1: https://doi.
org/10.1002/qute.201900070. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/qute.201900070.

J.C. Spall. “Multivariate stochastic approximation using a simultaneous perturbation
gradient approximation”. In: IEEE Transactions on Automatic Control 37.3 (1992),
pp. 332-341. DOTI: 10.1109/9.119632.

Unitary Fund Team. Results Are in for the 2022 Quantum Open Source Software Survey!
Unitary Fund Blog. Nov. 7, 2022. URL: https://unitary.fund/posts/2022_survey_
results/ (visited on 11/26/2023).

David Wierichs et al. “General parameter-shift rules for quantum gradients”. In:
Quantum 6 (Mar. 2022). Publisher: Verein zur Forderung des Open Access Pub-
lizierens in den Quantenwissenschaften, p. 677. po1: 10.22331/q-2022-03-30-677.

https://www.cambridge.org/9780521635035
https://doi.org/10.22331/q-2021-01-28-391
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.5281/zenodo.10413938
https://doi.org/10.5281/zenodo.10413938
https://doi.org/https://doi.org/10.1002/qute.201900070
https://doi.org/https://doi.org/10.1002/qute.201900070
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900070
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900070
https://doi.org/10.1109/9.119632
https://unitary.fund/posts/2022_survey_results/
https://unitary.fund/posts/2022_survey_results/
https://doi.org/10.22331/q-2022-03-30-677

A. Appendix

In section 5.2, I presented a characterization of the Crotosolve loss curve in comparison to
other optimizers used in Quantum Machine Learning. While the analysis was illustrated
with a single example, this section contains the loss curves of further PQCs. The circuit
ids referenced in the captions refer to the circuit template numbers from [17]. All tests
use circuits with four qubits and three template layers. The source code for the dataset
generation and visualization is available with the Crotosolve implementation [16].

33

A. Appendix

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0
g 0.0
3
0.5
~1.0
T T T T T T
0 50 100 150 200 250
No. of Circuit Evaluations
(a) Circuit 01 with 4 qubits and 3 layers
—— Adagrad
104 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
2
3 0.01
0.5
~1.0
T T T T T T
0 50 100 150 200 250
No. of Circuit Evaluations
(c) Circuit 03 with 4 qubits and 3 layers
—— Adagrad
1.01 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.51 —— Adam
2
3 0.01
-0.51
-1.01
0 50 100 150 200 250

No. of Circuit Evaluations

(e) Circuit 05 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0
8 0.0
3
~0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(b) Circuit 02 with 4 qubits and 3 layers

—— Adagrad
104 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.5 —— Adam
2
38 0.0 1
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(d) Circuit 04 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
05] —— Adam
2
& 0.0
—0.5
—1.0
0 50 100 150 200 250

No. of Circuit Evaluations

(f) Circuit 06 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results

34

Loss

Loss

Loss

Adagrad

1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0.0 4
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(g) Circuit 07 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.5 —— Adam
0.0{ ——
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(i) Circuit 09 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
051 —— Adam
0.0 1
—0.5
—1.0
0 50 100 150 200 250

No. of Circuit Evaluations

(k) Circuit 11 with 4 qubits and 3 layers

Loss

Loss

Loss

—— Adagrad
1.04 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0.0 4
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(h) Circuit 08 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
05 —— Adam
0.0 1
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(j) Circuit 10 with 4 qubits and 3 layers

—— Adagrad
1.04 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.5 4 —— Adam
0.0 4
—0.5
-1.0
0 50 100 150 200 250

No. of Circuit Evaluations

() Circuit 12 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)

35

A. Appendix

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0
g 0.0
3
—0.5 4
~1.01
T T T T T T
0 50 100 150 200 250
No. of Circuit Evaluations
(m) Circuit 13 with 4 qubits and 3 layers
—— Adagrad
104 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0
8 0.0
3
0.5
~1.0
T T T T T T
) 50 100 150 200 250
No. of Circuit Evaluations
(o) Circuit 15 with 4 qubits and 3 layers
—— Adagrad
1.01 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.51 —— Adam
0
8 0.04
3
-0.51
-1.01
0 50 100 150 200 250

36

No. of Circuit Evaluations

(q) Circuit 17 with 4 qubits and 3 layers

Loss

Loss

Loss

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
0.0 4
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(n) Circuit 14 with 4 qubits and 3 layers

—— Adagrad
104 —— Gradient Descent
—— Rotosolve
—— Crotosolve
0.5 —— Adam
0.0 1
—0.54
~1.04
T T T T T T
0 50 100 150 200 250

No. of Circuit Evaluations

(p) Circuit 16 with 4 qubits and 3 layers

—— Adagrad
1.0 —— Gradient Descent
—— Rotosolve
—— Crotosolve
051 —— Adam
0.0 1
—0.5
—1.0
0 50 100 150 200 250

No. of Circuit Evaluations

(r) Circuit 18 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)

—— Adagrad
1.01 Gradient Descent
—— Rotosolve
—— Crotosolve
054 —— Adam
2
3 0.0
—0.51
-1.01

T T T T
0 50 100 150 200 250
No. of Circuit Evaluations

(s) Circuit 19 with 4 qubits and 3 layers

Figure A.1.: Complete evaluation results (cont.)

	Introduction
	Background
	A brief introduction to quantum computing
	Multi-qubit-systems
	Gates and circuits

	Quantum Machine Learning
	Classical Machine Learning
	Quantum Machine Learning
	Optimization techniques

	Related work
	Crotosolve: Gradient-free controlled rotational Pauli gate optimization
	Effect
	Single outcome probabilities
	Determining the constants
	Minimizing the reconstruction

	Evaluation
	Proof of Concept
	Optimizer comparison
	Discussion

	Conclusion
	Bibliography
	Appendix

